Solutions that Blow Up: The Domain of a Solution

Example 1. Solve the IVP $\dot{y}=y^{2}, y(0)=1$.
Solution. We can solve this using separation of variables.
Separate: $\frac{d y}{y^{2}}=d x$.
Integrate: $-1 / y=x+C$.
Solve for y : $y=-1 /(x+C)$.
Find C using the IC: $y(0)=1=-1 / C$, therefore $C=-1$.
Solution: $y=-1 /(x-1)=1 /(1-x)$.
The graph has a vertical asympote at $x=1$.

Fig. 1. Graph of $y=1 /(1-x)$.
Starting at $x=0$ the graph goes to infinity as $x \rightarrow 1$. Informally, we say y blows up at $x=1$. The graph has two pieces. One is defined on $(-\infty, 1)$ and the other is defined on $(1, \infty)$. For technical reasons we prefer to say that we actually have two solutions to the DE. We indicate this by carefully specifying the domain of each.

$$
\begin{align*}
& y(x)=1 /(1-x) \quad x \text { in the interval }(-\infty, 1) \tag{1}\\
& y(x)=1 /(1-x) \quad x \text { in the interval }(1, \infty) . \tag{2}
\end{align*}
$$

Thus, the solution to the IVP in this example is solution (1).

The rule being followed here is that solutions to ODE's have domain consisting of a single interval. The example shows one reason for this: starting at $(0,1)$ on solution (1) there is no way to follow the solution continuously to solution (2).

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations[]

Fall 2011 [

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

