Other Basic Examples

1. Other Basic Examples

Here are some basic examples of DE's taken from math and science. Except for example 1 we will not give solutions. We will do that and more with these DE's as we go through the course.

Example 1. (From Calculus)

Solve for *y* satisfying $\frac{dy}{dx} = 2x$

Solution. This problem is just asking for the anti-derivative of 2*x*:

$$y(x) = x^2 + c.$$

Notice that there are many solutions, parametrized by *c*. An expression like this, which parametrizes all the solutions is called **the general solution**.

Example 2. (Heat Diffusion)

A body at temperature *T* sits in an environment of temperature T_E . Newton's law of cooling models the rate of change in temperature by

$$T' = -k(T - T_E),$$

where *k* is a positive constant. Note, the minus sign guarantees that the temperature *T* is always heading towards the temperature of the environment T_E .

Example 3. (Newton's Law of Motion: Constant Gravity) Near the earth a body falls according to the law

$$\frac{d^2y}{dt^2} = -g,$$

where *y* is the height of the body above the Earth and *g* is the acceleration due to gravity, 9.8 m/sec^2 .

Example 4. (Newton's Law of Gravitation)

Newton's law of gravity says that the acceleration due to gravity of a body at distance *r* from the center of the Earth is

$$\frac{d^2r}{dt^2} = -GM_E/r^2,$$

where M_E is the mass of the Earth and *G* is the universal gravitational constant.

Example 5. (Simple Harmonic Oscillator: Hooke's Law)

Suppose a body of mass m is attached to a spring. Let x be the amount the spring is stretched from its unstretched *equilibrium position*. Hooke's law combined with Newton's law of motion says

$$m\ddot{x} = -kx \quad \Leftrightarrow \quad m\ddot{x} + kx = 0,$$

where *k* is the **spring constant**. The minus sign indicates that the force always points back towards equilibrium, as it does in the real world.

Example 6. (Damped Harmonic Oscillator)

If we add a damping force proportional to velocity to the spring-mass system in example 5, we get

$$m\ddot{x} = -kx - b\dot{x} \quad \Leftrightarrow \quad m\ddot{x} + b\dot{x} + kx = 0,$$

here $-b\dot{x}$ is the damping force and *b* is called the **damping constant**.

Example 7. (Damped Harmonic Oscillator with an External Force) If we add a time varying external force F(t) to the system in example 6, we get

$$m\ddot{x} = -kx - b\dot{x} + F(t) \quad \Leftrightarrow \quad m\ddot{x} + b\dot{x} + kx = F(t).$$

MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.