Other Basic Examples

1. Other Basic Examples

Here are some basic examples of DE's taken from math and science. Except for example 1 we will not give solutions. We will do that and more with these DE's as we go through the course.
Example 1. (From Calculus)
Solve for y satisfying $\frac{d y}{d x}=2 x$
Solution. This problem is just asking for the anti-derivative of $2 x$:

$$
y(x)=x^{2}+c .
$$

Notice that there are many solutions, parametrized by c. An expression like this, which parametrizes all the solutions is called the general solution.

Example 2. (Heat Diffusion)
A body at temperature T sits in an environment of temperature T_{E}. Newton's law of cooling models the rate of change in temperature by

$$
T^{\prime}=-k\left(T-T_{E}\right),
$$

where k is a positive constant. Note, the minus sign guarantees that the temperature T is always heading towards the temperature of the environment T_{E}.

Example 3. (Newton's Law of Motion: Constant Gravity)
Near the earth a body falls according to the law

$$
\frac{d^{2} y}{d t^{2}}=-g
$$

where y is the height of the body above the Earth and g is the acceleration due to gravity, $9.8 \mathrm{~m} / \mathrm{sec}^{2}$.

Example 4. (Newton's Law of Gravitation)
Newton's law of gravity says that the acceleration due to gravity of a body at distance r from the center of the Earth is

$$
\frac{d^{2} r}{d t^{2}}=-G M_{E} / r^{2}
$$

where M_{E} is the mass of the Earth and G is the universal gravitational constant.

Example 5. (Simple Harmonic Oscillator: Hooke's Law)
Suppose a body of mass m is attached to a spring. Let x be the amount the spring is stretched from its unstretched equilibrium position. Hooke's law combined with Newton's law of motion says

$$
m \ddot{x}=-k x \quad \Leftrightarrow \quad m \ddot{x}+k x=0
$$

where k is the spring constant. The minus sign indicates that the force always points back towards equilibrium, as it does in the real world.

Example 6. (Damped Harmonic Oscillator)
If we add a damping force proportional to velocity to the spring-mass system in example 5, we get

$$
m \ddot{x}=-k x-b \dot{x} \quad \Leftrightarrow \quad m \ddot{x}+b \dot{x}+k x=0
$$

here $-b \dot{x}$ is the damping force and b is called the damping constant.
Example 7. (Damped Harmonic Oscillator with an External Force) If we add a time varying external force $F(t)$ to the system in example 6 , we get

$$
m \ddot{x}=-k x-b \dot{x}+F(t) \quad \Leftrightarrow \quad m \ddot{x}+b \dot{x}+k x=F(t)
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

