Part I Problems and Solutions

Problem 1: Find the general solution by separation of variables:

$$\frac{dy}{dx} = 2 - y, \qquad y(0) = 0$$

Solution:

$$\frac{dy}{2-y} = dx \rightarrow \int \frac{dy}{2-y} = \int dx \rightarrow$$
$$-\ln|2-y| = x + c \rightarrow |2-y| = Ce^{-x} \quad \text{(with } C = e^c) \rightarrow$$
$$y = 2 - Ce^{-x} \quad \text{(with } C \text{ any number)}$$
$$\text{IC: } y(0) = 2 - C = 0 \rightarrow C = 2 \rightarrow y = 2(1 - e^{-x})$$

Problem 2: Find the general solution by separation of variables:

$$\frac{dy}{dx} = \frac{(y-1)^2}{(x+1)^2}$$

Solution:

$$\frac{dy}{(y-1)^2} = \frac{dx}{(x+1)^2} \to \int \frac{dy}{(y-1)^2} = \int \frac{dx}{(x+1)^2} \to -\frac{1}{y-1} = -\frac{1}{x+1} + c$$

Extra: solve for *y* as a function of *x*:

Answer: $y = 1 + \frac{x+1}{1-c(x+1)}$

Problem 3: The rate of change of a certain population is proportional to the square root of its size. Model this situation with a differential equation.

Solution: Let P = P(t) be the size of the population as a function of time *t*. Then

$$\frac{dP}{dt} = k\sqrt{P}$$

where k > 0 is the constant of proportionality.

Problem 4:

The rate of change of the velocity of an object is proportional to the square of the velocity. Model this situation with a differential equation.

Solution:

$$\frac{dv}{dt} = kv^2$$

with k > 0, constant.

Problem 5:

In a population of fixed size *S*, the rate of change of the number *N* of persons who have heard a rumor is proportional to the number of those who have not yet heard it. Model this situation with a differential equation.

Solution:

$$\frac{dN}{dt} = k(S - N)$$

with k > 0, constant.

Problem 6: The amount of a certain medicine in the bloodstream decays exponentially with a half-life of 5 hours. In order to keep a patient safe during a one-hour procedure, there needs to be at least 50 mg of medicine per kg of body weight. How much medicine should be administered to a 60kg patient at the start of the procedure?

Solution: Let x(t) be the amount of the medicine in mg present in the bloodstream at time t in hours.

Given information: $x(t) = x_0 e^{-kt}$ with $k = \frac{\ln 2}{5} \left(\frac{1}{hr}\right)$, since half-life is given as 5 hours.

Since $x(t) = x_0 e^{-kt}$ is decreasing, $x(t) \le x(1)$ for $t \ge 1$ hrs. So the patient will be (just) safe if $x(1) = x_0 e^{-k \cdot 1} = 50 \cdot 60 = 3000 \text{ mg} = 3 \text{ g where } k = \frac{\ln 2}{5}$. Thus, $x_0 = x(1) \cdot e^k = e^{(\ln 2)/5} \cdot 3000 \approx 3446 \text{ mg}$ (or about 3.446 g).

Problem 7: Early one morning it starts to snow. At 7AM a snowplow sets off to clear the road. By 8AM, it has gone 2 miles. It takes an additional 2 hours for the plow to go another 2 miles. Let t = 0 when it begins to snow, let x denote the distance traveled by the plow at time t. Assuming the snowplow clears snow at a constant rate in cubic meters/hour:

a) Find the DE modeling the value of *x*.

b) When did it start snowing?

Solution: a) One approach: let k_1 be the rate (in height/hour) of snowfall and k_2 be the rate of snow clearance.

The height of snow is $k_1t \to \Delta x \cdot k_1t \approx k_2\Delta t \to \frac{\Delta x}{\Delta t} \approx \frac{k_2}{k_1t}$ This is then $\frac{dx}{dt} = \frac{k}{t}$, where k is a constant. b) Solving by separation of variables, $x = k \ln t + C$. Let $t = t_1$ at 7AM, so $t = t_1 + 1$ at 8AM and $t = t_1 + 3$ at 10AM. 2 miles between 7 and 8AM $\to 2 = x(t_1 + 1) - x(t_1) = k \ln ((t_1 + 1) / t_1)$ 4 miles between 7 and 10AM $\to 4 = x(t_1 + 3) - x(t_1) = k \ln ((t_1 + 3) / t_1)$ Thus, $\ln \left(\frac{t_1+3}{t_1}\right) = 2 \ln \left(\frac{t_1+1}{t_1}\right) \to \frac{t_1+3}{t_1} = \left(\frac{t_1+1}{t_1}\right)^2$

After a little algebra, $t_1 = 1$, so the snow started at 6AM

Problem 8: A tank holds 100 liters of water which contains 25 grams of salt initially. Pure water then flows into the tank, and salt water flows out of the tank, both at 5 liters/minute. The mixture is kept uniform at all times by stirring.

a) Write down the DE with IC for this situation.

b) How long will it take until only 1 gram of salt remains in the tank?

Solution: Let x = x(t) be the amount of salt in the tank in grams, with *t* the time in minutes.

a) DE: net rate of change of salt. $\frac{dx}{dt}$ = salt rate in - salt rate out = $0-5 \cdot \frac{x}{100}$. DE: $\frac{dx}{dt}$ = -.05x, IC x(0) = 25 b) Solution to DE: $x(t) = Ce^{-.05t}$. IC x(0) = 25 = c, so $x(t) = 25e^{-.05t}$. x(t) = 1 when $25e^{-.05t} = 1 \rightarrow t = \frac{\ln 25}{05} \approx 64.38$ min MIT OpenCourseWare http://ocw.mit.edu

18.03SC Differential Equations Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.