## Part I Problems and Solutions

Problem 1: Find the general solution by separation of variables:

$$
\frac{d y}{d x}=2-y, \quad y(0)=0
$$

Solution:

$$
\begin{gathered}
\frac{d y}{2-y}=d x \rightarrow \int \frac{d y}{2-y}=\int d x \rightarrow \\
-\ln |2-y|=x+c \rightarrow|2-y|=C e^{-x} \quad\left(\text { with } C=e^{c}\right) \rightarrow \\
y=2-C e^{-x} \quad(\text { with } C \text { any number) }
\end{gathered}
$$

IC: $y(0)=2-C=0 \rightarrow C=2 \rightarrow y=2\left(1-e^{-x}\right)$
Problem 2: Find the general solution by separation of variables:

$$
\frac{d y}{d x}=\frac{(y-1)^{2}}{(x+1)^{2}}
$$

Solution:

$$
\begin{gathered}
\frac{d y}{(y-1)^{2}}=\frac{d x}{(x+1)^{2}} \rightarrow \int \frac{d y}{(y-1)^{2}}=\int \frac{d x}{(x+1)^{2}} \rightarrow \\
-\frac{1}{y-1}=-\frac{1}{x+1}+c
\end{gathered}
$$

Extra: solve for $y$ as a function of $x$ :
Answer: $y=1+\frac{x+1}{1-c(x+1)}$

Problem 3: The rate of change of a certain population is proportional to the square root of its size. Model this situation with a differential equation.

Solution: Let $P=P(t)$ be the size of the population as a function of time $t$. Then

$$
\frac{d P}{d t}=k \sqrt{P}
$$

where $k>0$ is the constant of proportionality.

## Problem 4:

The rate of change of the velocity of an object is proportional to the square of the velocity. Model this situation with a differential equation.

## Solution:

$$
\frac{d v}{d t}=k v^{2}
$$

with $k>0$, constant.

## Problem 5:

In a population of fixed size $S$, the rate of change of the number $N$ of persons who have heard a rumor is proportional to the number of those who have not yet heard it. Model this situation with a differential equation.

## Solution:

$$
\frac{d N}{d t}=k(S-N)
$$

with $k>0$, constant.

Problem 6: The amount of a certain medicine in the bloodstream decays exponentially with a half-life of 5 hours. In order to keep a patient safe during a one-hour procedure, there needs to be at least 50 mg of medicine per kg of body weight. How much medicine should be administered to a 60 kg patient at the start of the procedure?

Solution: Let $x(t)$ be the amount of the medicine in mg present in the bloodstream at time $t$ in hours.
Given information: $x(t)=x_{0} e^{-k t}$ with $k=\frac{\ln 2}{5}\left(\frac{1}{\mathrm{hr}}\right)$, since half-life is given as 5 hours.
Since $x(t)=x_{0} e^{-k t}$ is decreasing, $x(t) \leq x(1)$ for $t \geq 1 \mathrm{hrs}$. So the patient will be (just) safe if $x(1)=x_{0} e^{-k \cdot 1}=50 \cdot 60=3000 \mathrm{mg}=3 \mathrm{~g}$ where $k=\frac{\ln 2}{5}$. Thus, $x_{0}=x(1) \cdot e^{k}=$ $e^{(\ln 2) / 5} \cdot 3000 \approx 3446 \mathrm{mg}$ (or about 3.446 g ).

Problem 7: Early one morning it starts to snow. At 7AM a snowplow sets off to clear the road. By $8 A M$, it has gone 2 miles. It takes an additional 2 hours for the plow to go another 2 miles. Let $t=0$ when it begins to snow, let $x$ denote the distance traveled by the plow at time $t$. Assuming the snowplow clears snow at a constant rate in cubic meters/hour:
a) Find the DE modeling the value of $x$.
b) When did it start snowing?

Solution: a) One approach: let $k_{1}$ be the rate (in height/hour) of snowfall and $k_{2}$ be the rate of snow clearance.
The height of snow is $k_{1} t \rightarrow \Delta x \cdot k_{1} t \approx k_{2} \Delta t \rightarrow \frac{\Delta x}{\Delta t} \approx \frac{k_{2}}{k_{1} t}$
This is then $\frac{d x}{d t}=\frac{k}{t}$, where $k$ is a constant.
b) Solving by separation of variables, $x=k \ln t+C$.

Let $t=t_{1}$ at 7AM, so $t=t_{1}+1$ at 8 AM and $t=t_{1}+3$ at 10AM.
2 miles between 7 and $8 \mathrm{AM} \rightarrow 2=x\left(t_{1}+1\right)-x\left(t_{1}\right)=k \ln \left(\left(t_{1}+1\right) / t_{1}\right)$
4 miles between 7 and 10AM $\rightarrow 4=x\left(t_{1}+3\right)-x\left(t_{1}\right)=k \ln \left(\left(t_{1}+3\right) / t_{1}\right)$
Thus, $\ln \left(\frac{t_{1}+3}{t_{1}}\right)=2 \ln \left(\frac{t_{1}+1}{t_{1}}\right) \rightarrow \frac{t_{1}+3}{t_{1}}=\left(\frac{t_{1}+1}{t_{1}}\right)^{2}$
After a little algebra, $t_{1}=1$, so the snow started at 6AM

Problem 8: A tank holds 100 liters of water which contains 25 grams of salt initially. Pure water then flows into the tank, and salt water flows out of the tank, both at 5 liters/minute. The mixture is kept uniform at all times by stirring.
a) Write down the DE with IC for this situation.
b) How long will it take until only 1 gram of salt remains in the tank?

Solution: Let $x=x(t)$ be the amount of salt in the tank in grams, with $t$ the time in minutes.
a) DE: net rate of change of salt. $\frac{d x}{d t}=$ salt rate in - salt rate out $=$ $0-5 \cdot \frac{x}{100}$.
DE: $\frac{d x}{d t}=-.05 x, \quad$ IC $x(0)=25$
b) Solution to DE: $x(t)=C e^{-.05 t}$. IC $x(0)=25=c$, so $x(t)=25 e^{-.05 t}$.
$x(t)=1$ when $25 e^{-.05 t}=1 \rightarrow t=\frac{\ln 25}{.05} \approx 64.38 \mathrm{~min}$

MIT OpenCourseWare
http://ocw.mit.edu

### 18.03SC Differential Equations

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

