$18.034 \quad$ 5/3/04

Recitation Suggestion

Maybe do another example,

$$
\left\{\begin{array}{l}
x^{\prime}=(-x+2 y)(x+1) \\
y^{\prime}=-2 x-y
\end{array}\right.
$$

Eq. pts $=(0,0)$ and ($-1,2$).
At $(0,0)$, get a stable spiral, spiraling clockwise in.
At $(-1,2)$, get a node $\mathrm{W} /$ eigenvector, eigenvalue pairs:
$\lambda=5, v=\left[\frac{3}{-1}\right] ; \lambda=-1, v=\left[\frac{0}{1}\right]$.
$x=-1$ gives solution curves. So the graph is

Perhaps remind students of the orbital portraits for $y^{\prime \prime}=a y^{\prime}+$ by $=0$:

These portraits were originally given in Lecture 16. Next time we will discuss stability \& structural stability and generalize to arbitrary 2D linear systems.

