I talked with one student, and I believe the methodical approach of the last 2 lectures has helped students catch-up. Unfortunately it has left us behind schedule. We've already done most of $\S 3.7$, but there is a bit more to go. And inhomog. systems of the form $p(D)[y]=e^{a t} \cos \beta t \bullet h(t), h$ a poly., will be easy with our setup. But we probably won't get to $\S 3.8$. And $\S 4.1, ~ \S 4.3$ might need to be done in Wed. rec.

1. Examples of homog. const. coeff. linear systems w/ complex roots/ eigenvalues, no repeated roots.

$$
\begin{aligned}
& \left(D^{2}+\omega^{2}\right) y=0 \leadsto y=C_{1} \cos (\omega t)+C_{2} \sin (\omega t)=A \cos (\omega t) \\
& \left(D^{3}-1\right) y=0 \leadsto y=C_{1} e^{t}+C_{2} e^{-\frac{1}{2} t} \cos \left(\frac{\sqrt{3}}{2} t\right)+C_{3} e^{-\frac{1}{2} t} \sin \left(\frac{\sqrt{3}}{2} t\right) \\
& \left(D^{n}-1\right) y=0 ?
\end{aligned}
$$

2. Repeated roots
$\left(D^{4}+2 \omega^{2} D^{2}+\omega^{4}\right) y=0 \leadsto y=C_{1} \cos (\omega t)+C_{2} \sin (\omega t)+C_{3} t \cos (\omega t)+C_{4} t \sin (\omega t)$.
3. Solving IVP's. $\left\{\begin{array}{ll}\left(D^{2}+\omega^{2}\right) y=0 \\ y\left(t_{0}\right)=y_{0} & \\ y\left(t_{0}\right)=v_{0} & y(t)=A \cos (\omega t-\Phi) ?\end{array} \quad\right.$ What is the amplitude A of

What is $\tan (\Phi)$?
4. Phase $p \propto$ traits for overdamped, underdamped, crit. damped SHO? (probably not crash time)

