18.700 JORDAN NORMAL FORM NOTES

These are some supplementary notes on how to find the Jordan normal form of a small matrix. First we recall some of the facts from lecture, next we give the general algorithm for finding the Jordan normal form of a linear operator, and then we will see how this works for small matrices.

1. Facts

Throughout we will work over the field \mathbb{C} of complex numbers, but if you like you may replace this with any other algebraically closed field. Suppose that V is a \mathbb{C} -vector space of dimension n and suppose that $T:V\to V$ is a \mathbb{C} -linear operator. Then the characteristic polynomial of T factors into a product of linear terms, and the irreducible factorization has the form

$$c_T(X) = (X - \lambda_1)^{m_1} (X - \lambda_2)^{m_2} \dots (X - \lambda_r)^{m_r}, \tag{1}$$

for some distinct numbers $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ and with each m_i an integer $m_1 \geq 1$ such that $m_1 + \cdots + m_r = n$.

Recall that for each eigenvalue λ_i , the eigenspace E_{λ_i} is the kernel of $T - \lambda_i I_V$. We generalized this by defining for each integer $k = 1, 2, \ldots$ the vector subspace

$$E_{(X-\lambda_i)^k} = \ker(T - \lambda_i I_V)^k. \tag{2}$$

It is clear that we have inclusions

$$E_{\lambda_i} = E_{X - \lambda_i} \subset E_{(X - \lambda_i)^2} \subset \dots \subset E_{(X - \lambda_i)^e} \subset \dots$$
 (3)

Since $\dim(V) = n$, it cannot happen that each $\dim(E_{(X-\lambda_i)^k}) < \dim(E_{(X-\lambda_i)^{k+1}})$, for each $k = 1, \ldots, n$. Therefore there is some least integer $e_i \leq n$ such that $E_{(X-\lambda_i)^{e_i}} = E_{(X-\lambda_i)^{e_i+1}}$. As was proved in class, for each $k \geq e_i$ we have $E_{(X-\lambda_i)^k} = E_{(X-\lambda_i)^{e_i}}$, and we defined the generalized eigenspace $E_{\lambda_i}^{\text{gen}}$ to be $E_{(X-\lambda_i)^{e_i}}$.

It was proved in lecture that the subspaces $E_{\lambda_1}^{\mathrm{gen}},\dots,E_{\lambda_r}^{\mathrm{gen}}$ give a direct sum decomposition of V. From this our criterion for diagonalizability of follows: T is diagonalizable iff for each $i=1,\dots,r$, we have $E_{\lambda_i}^{\mathrm{gen}}=E_{\lambda_i}$. Notice that in this case T acts on each $E_{\lambda_i}^{\mathrm{gen}}$ as λ_i times the identity. This motivates the definition of the semisimple part of T as the unique \mathbb{C} -linear operator $S:V\to V$ such that for each $i=1,\dots,r$ and for each $v\in E_{\lambda_i}^{\mathrm{gen}}$ we have $S(v)=\lambda_i v$. We defined N=T-S and observed that N preserves each $E_{\lambda_i}^{\mathrm{gen}}$ and is nilpotent, i.e. there exists an integer $e\geq 1$ (really just the maximum of e_1,\dots,e_r) such that N^e is the zero linear operator. To summarize:

(A) The generalized eigenspaces $E_{\lambda_1}^{\text{gen}}, \dots, E_{\lambda_r}^{\text{gen}}$ defined by

$$E_{\lambda_i}^{\text{gen}} = \{ v \in V | \exists e, (T - \lambda_i I_V)^e(v) = 0 \}, \tag{4}$$

Date: Fall 2001.

give a direct sum decomposition of V. Moreover, we have $\dim(E_{\lambda_i}^{\text{gen}})$ equals the algebraic multiplicity of λ_i , m_i .

(B) The semisimple part S of T and the nilpotent part N of T defined to be the unique \mathbb{C} -linear operators $V \to V$ such that for each $i = 1, \ldots, r$ and each $v \in E_{\lambda_i}^{\text{gen}}$ we have

$$S(v) = S^{(i)}(v) = \lambda_i v, N(v) = N^{(i)}(v) = T(v) - \lambda_i v,$$
(5)

satisfy the properties:

- (1) S is diagonalizable with $c_S(X) = c_T(X)$, and the λ_i -eigenspace of S is $E_{\lambda_i}^{\text{gen}}$ (for T). (2) N is nilpotent, N preserves each $E_{\lambda_i}^{\text{gen}}$ and if $N^{(i)}: E_{\lambda_i}^{\text{gen}} \to E_{\lambda_i}^{\text{gen}}$ is the unique linear operator with $N^{(i)}(v) = N(v)$, then $\left[N^{(i)}\right]^{e_i-1}$ is nonzero but $\left[N^{(i)}\right]^{e_i} = 0$.
- (3) T = S + N.
- (4) SN = NS.
- (5) For any other \mathbb{C} -linear operator $T': V \to V$, T' commutes with T (T'T = TT') iff T'commutes with both S and N. Moreover T' commutes with S iff for each i = 1, ..., r, we have $T'(E_{\lambda_i}^{\text{gen}}) \subset E_{\lambda_i}^{\text{gen}}$.
- (6) If (S', N') is any pair of a diagonalizable operator S' and a nilpotent operator N' such that T = S' + N' and S'N' = N'S', then S' = S and N' = N. We call the unique pair (S, N) the semisimple-nilpotent decomposition of T.
- (C) For each $i=1,\ldots,r$, choose an ordered basis $\mathcal{B}^{(i)}=(v_1^{(i)},\ldots,v_{m_i}^{(i)})$ of $E_{\lambda_i}^{\text{gen}}$ and let $\mathcal{B} = (\mathcal{B}^{(1)}, \dots, \mathcal{B}^{(r)})$ be the concatenation, i.e.

$$\mathcal{B} = \left(v_1^{(1)}, \dots, v_{m_1}^{(1)}, v_1^{(2)}, \dots, v_{m_2}^{(2)}, \dots, v_1^{(r)}, \dots, v_{m_r}^{(r)}\right). \tag{6}$$

For each i let $S^{(i)}$, $N^{(i)}$ be as above and define the $m_i \times m_i$ matrices

$$D^{(i)} = \left[S^{(i)} \right]_{\mathcal{B}^{(i)}, \mathcal{B}^{(i)}}, C^{(i)} = \left[N^{(i)} \right]_{\mathcal{B}^{(i)}, \mathcal{B}^{(i)}}. \tag{7}$$

Then we have $D^{(i)} = \lambda_i I_{m_i}$ and $C^{(i)}$ is a nilpotent matrix of exponent e_i . Moreover we have the block forms of S and N:

$$[S]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 I_{m_1} & 0_{m_1 \times m_2} & \dots & 0_{m_1 \times m_r} \\ 0_{m_2 \times m_1} & \lambda_2 I_{m_2} & \dots & 0_{m_2 \times m_r} \\ \vdots & \vdots & \ddots & \vdots \\ 0_{m_r \times m_1} & 0_{m_r \times m_1} & \dots & \lambda_r I_{m_r} \end{pmatrix},$$
(8)

$$[N]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} C^{(1)} & 0_{m_1 \times m_2} & \dots & 0_{m_1 \times m_r} \\ 0_{m_2 \times m_1} & C^{(2)} & \dots & 0_{m_2 \times m_r} \\ \vdots & \vdots & \ddots & \vdots \\ 0_{m_r \times m_1} & 0_{m_r \times m_2} & \dots & C^{(r)} \end{pmatrix}.$$
(9)

Notice that $D^{(i)}$ has a nice form with respect to ANY basis $\mathcal{B}^{(i)}$ for $E_{\lambda_i}^{\text{gen}}$. But we might hope to improve $C^{(i)}$ by choosing a better basis.

A very simple kind of nilpotent linear transformation is the *nilpotent Jordan block*, i.e. $T_{J_a}: \mathbb{C}^a \to \mathbb{C}^a$ where J_a is the matrix

$$J_{a} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & 1 & 0 \end{pmatrix}.$$

$$(10)$$

In other words,

$$J_a \mathbf{e}_1 = \mathbf{e}_2, J_a \mathbf{e}_2 = \mathbf{e}_3, \dots, J_a \mathbf{e}_{a-1} = \mathbf{e}_a, J_a \mathbf{e}_a = 0.$$
 (11)

Notice that the powers of J_a are very easy to compute. In fact $J_a^a = 0_{a,a}$, and for $d = 1, \ldots, a-1$, we have

$$J_a^d \mathbf{e}_1 = \mathbf{e}_{d+1}, J_a^d \mathbf{e}_2 = \mathbf{e}_{d+2}, \dots, J_a^d \mathbf{e}_{a-d} = \mathbf{e}_a, J_a^d \mathbf{e}_{a+1-d} = 0, \dots, J_a^d \mathbf{e}_a = 0.$$
 (12)

Notice that we have $\ker(J_a^d) = \operatorname{span}(\mathbf{e}_{a+1-d}, \mathbf{e}_{a+2-d}, \dots, \mathbf{e}_a)$.

A nilpotent matrix $C \in M_{m \times m}(\mathbb{C})$ is said to be in Jordan normal form if it is of the form

$$C = \begin{pmatrix} J_{a_1} & 0_{a_1 \times a_2} & \dots & 0_{a_1 \times a_t} & 0_{a_1 \times b} \\ 0_{a_2 \times a_1} & J_{a_2} & \dots & 0_{a_2 \times a_t} & 0_{a_2 \times b} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0_{a_t \times a_1} & 0_{a_t \times a_1} & \dots & J_{a_t} & 0_{a_t \times b} \\ 0_{b \times a_1} & 0_{b \times a_1} & \dots & 0_{b \times a_t} & 0_{b \times b} \end{pmatrix},$$

$$(13)$$

where $a_1 \ge a_2 \ge \cdots \ge a_t \ge 2$ and $a_1 + \cdots + a_t + b = m$.

We say that a basis $\mathcal{B}^{(i)}$ puts $T^{(i)}$ in Jordan normal form if $C^{(i)}$ is in Jordan normal form. We say that a basis $\mathcal{B} = (\mathcal{B}^{(1)}, \dots, \mathcal{B}^{(r)})$ puts T in Jordan normal form if each $\mathcal{B}^{(i)}$ puts $T^{(i)}$ in Jordan normal form.

WARNING: Usually such a basis is not unique. For example, if T is diagonalizable, then ANY basis $\mathcal{B}^{(i)}$ puts $T^{(i)}$ in Jordan normal form.

2. Algorithm

In this section we present the general algorithm for finding bases $\mathcal{B}^{(i)}$ which put T in Jordan normal form.

Suppose that we already had such bases. How could we describe the basis vectors? One observation is that for each Jordan block J_a , we have that $\mathbf{e}_{d+1} = J_a^d(\mathbf{e}_1)$ and also that spane₁ and $\ker(J_a^{a-1})$ give a direct sum decomposition of \mathbb{C}^a .

What if we have two Jordan blocks, say

$$J = \begin{pmatrix} J_{a_1} & 0_{a_1 \times a_2} \\ 0_{a_2 \times a_1} & J_{a_2} \end{pmatrix}, a_1 \ge a_2.$$
 (14)

This is the matrix such that

$$J\mathbf{e}_1 = \mathbf{e}_2, \dots, J\mathbf{e}_{a_1-1} = \mathbf{e}_{a_1}, J\mathbf{e}_{a_1} = 0, J\mathbf{e}_{a_1+1} = \mathbf{e}_{a_1+2}, \dots, J\mathbf{e}_{a_1+a_2-1} = \mathbf{e}_{a_1+a_2}, J\mathbf{e}_{a_1+a_2} = 0.$$
(15)

Again we have that $\mathbf{e}_{d+1} = J^d \mathbf{e}_1$ and $\mathbf{e}_{d+a_1+1} = J^d \mathbf{e}_{a_1+1}$. So if we wanted to reconstruct this basis, what we really need is just \mathbf{e}_1 and \mathbf{e}_{a_1+1} . We have already seen that a distinguishing feature of \mathbf{e}_1 is that it is an element of $\ker(J^{a_1})$ which is not in $\ker(J^{a_1-1})$. If $a_2 = a_1$, then this is also a distinguishing feature of \mathbf{e}_{a_1+1} . But if $a_2 < a_1$, this doesn't work. In this case it turns out that the distinguishing feature is that \mathbf{e}_{a_1+1} is in $\ker(J^{a_2})$ but is not in $\ker(J^{a_2-1}) + J(\ker(J^{a_2+1}))$. This motivates the following definition:

Definition 1. Suppose that $B \in M_{n \times n}(\mathbb{C})$ is a matrix such that $ker(B^e) = ker(B^{e+1})$. For each $k = 1, \ldots, e$, we say that a subspace $G_k \subset ker(B^k)$ is primitive (for k) if

- (1) $G_k + ker(B^{k-1}) + B(ker(B^{k+1})) = ker(B^k)$, and
- (2) $G_k \cap (ker(B^{k-1}) + B(ker(B^{k+1}))) = \{0\}.$

Here we make the convention that $B^0 = I_n$.

It is clear that for each k we can find a primitive G_k : simply find a basis for $\ker(B^{k-1}) + B(\ker(B^{k+1}))$ and then extend it to a basis for all of $\ker(B^k)$. The new basis vectors will span a primitive G_k .

Now we are ready to state the algorithm. Suppose that T is as in the previous section. For each eigenvalue λ_i , choose any basis \mathcal{C} for V and let $A = [T]_{\mathcal{C},\mathcal{C}}$. Define $B = A - \lambda_i I_n$. Let $1 \leq k_1 < \cdots < k_u \leq n$ be the distinct integers such that there exists a nontrivial primitive subspace G_{k_j} . For each $j = 1, \ldots, u$, choose a basis $(v[j]_1, \ldots, v[j]_{p_j})$ for G_{k_j} . Then the desired basis is simply

$$\mathcal{B}^{(i)} = (v[u]_1, Bv[u]_1, \dots, B^{u-1}v[u]_1, \\ v[u]_2, Bv[u]_2, \dots, B^{k_u-1}v[u]_2, \dots, v[u]_{p_u}, \dots, B^{k_u-1}v[u]_{p_1}, \dots, \\ v[j]_i, Bv[j]_i, \dots, B^{k_j-1}v[j]_i, \dots, v[1]_1, \dots, B^{k_1-1}v[1]_1, \dots, \\ v[1]_{p_1}, \dots, B^{k_1-1}v[1]_{p_1}).$$

When we perform this for each i = 1, ..., r, we get the desired basis for V.

3. Small cases

The algorithm above sounds more complicated than it is. To illustrate this, we will present a step-by-step algorithm in the 2×2 and 3×3 cases and illustrate with some examples.

3.1. **Two-by-two matrices.** First we consider the two-by-two case. If $A \in M_{2\times 2}(\mathbb{C})$ is a matrix, its characteristic polynomial $c_A(X)$ is a quadratic polynomial. The first dichotomy is whether $c_A(X)$ has two distinct roots or one repeated root.

Two distinct roots Suppose that $c_A(X) = (X - \lambda_1)(X - \lambda_2)$ with $\lambda_1 \neq \lambda_2$. Then for each i = 1, 2 we form the matrix $B_i = A - \lambda_i I_2$. By performing Gauss-Jordan elimination we may find a basis for $\ker(B_i)$. In fact each kernel will be one-dimensional, so let v_1 be a basis

for $\ker(B_1)$ and let v_2 be a basis for $\ker(B_2)$. Then with respect to the basis $\mathcal{B} = (v_1, v_2)$, we will have

$$[A]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_2 \end{pmatrix}. \tag{16}$$

Said a different way, if we form the matrix $P = (v_1|v_2)$ whose first column is v_1 and whose second column is v_2 , then we have

$$A = P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^{-1}. \tag{17}$$

To summarize:

$$span(v_1) = E_{\lambda_1} = ker(A - \lambda_1 I_2) = ker(A - \lambda_1 I_2)^2 = \dots = E_{\lambda_1}^{gen},$$
(18)

$$span(v_2) = E_{\lambda_2} = \ker(A - \lambda_2 I_1) = \ker(A - \lambda_2 I_2)^2 = \dots = E_{\lambda_2}^{gen}.$$
 (19)

Setting $\mathcal{B} = (v_1, v_2)$ and $P = (v_1|v_2)$, We also have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, A = P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^{-1}.$$
 (20)

Also S = A and $N = 0_{2 \times 2}$.

Now we consider an example. Consider the matrix

$$A = \begin{pmatrix} 38 & -70\\ 21 & -39 \end{pmatrix}. \tag{21}$$

The characteristic polynomial is $X^2 - \operatorname{trace}(A)X + \det(A)$, which is $X^2 + X - 12$. This factors as (X+4)(X-3), so we are in the case discussed above. The two eigenvalues are -4 and 3.

First we consider the eigenvalue $\lambda_1 = -4$. Then we have

$$B_1 = A + 4I_2 = \begin{pmatrix} 42 & -70 \\ 21 - 35 \end{pmatrix}. \tag{22}$$

Performing Gauss-Jordan elimination on this matrix gives a basis of the kernel: $v_1 = (5,3)^{\dagger}$.

Next we consider the eigenvalue $\lambda_2 = 3$. Then we have

$$B_2 = A - 3I_2 = \begin{pmatrix} 35 & -70 \\ 21 & -42 \end{pmatrix}. \tag{23}$$

Performing Gauss-Jordan elimination on this matrix gives a basis of the kernel: $v_2 = (2,1)^{\dagger}$.

We conclude that:

$$E_{-4} = \operatorname{span}\left(\begin{pmatrix} 5\\3 \end{pmatrix}\right), E_3 = \operatorname{span}\left(\begin{pmatrix} 2\\1 \end{pmatrix}\right).$$
 (24)

and that

$$A = P \begin{pmatrix} -4 & 0 \\ 0 & 3 \end{pmatrix} P^{-1}, P = \begin{pmatrix} 5 & 2 \\ 3 & 1 \end{pmatrix}.$$
 (25)

One repeated root: Next suppose that $c_A(X)$ has one repeated root: $c_A(X) = (X - \lambda_1)^2$. Again we form the matrix $B_1 = A - \lambda_1 I_2$. There are two cases depending on the dimension of $E_{\lambda_1} = \ker(B_1)$. The first case is that $\dim(E_{\lambda_1}) = 2$. In this case A is diagonalizable. In fact, with respect to some basis \mathcal{B} we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0\\ 0 & \lambda_1 \end{pmatrix}. \tag{26}$$

But, if you think about it, this means that A has the above form with respect to ANY basis. In other words, our original matrix, expressed with respect to any basis, is simply $\lambda_1 I_2$. This case is readily identified, so if A is not already in diagonal form at the beginning of the problem, we are in the second case.

In the second case E_{λ_1} has dimension 1. According to our algorithm, we must find a primitive subspace $G_2 \subset \ker(B_1^2) = \mathbb{C}^2$. Such a subspace necessarily has dimension 1, i.e. it is of the form $\operatorname{span}(v_1)$ for some v_1 . And the condition that G_2 be primitive is precisely that $v_1 \not\in \ker(B_1)$. In other words, we begin by choosing ANY vector $v_1 \not\in \ker(B_1)$. Then we define $v_2 = B(v_1)$. We form the basis $\mathcal{B} = (v_1, v_2)$, and the transition matrix $P = (v_1|v_2)$. Then we have $E_{\lambda_1} = \operatorname{span}(v_2)$ and also

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix}, A = P \begin{pmatrix} \lambda & 0 \\ 1 & \lambda \end{pmatrix} P^{-1}. \tag{27}$$

This is the one case where we have nontrivial nilpotent part:

$$S = \lambda_1 I_2 = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}, N = A - \lambda_1 I_2 = B_1 = P \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} P^{-1}.$$
 (28)

Let's see how this works in an example. Consider the matrix from the practice problems:

$$A = \begin{pmatrix} -5 & -4 \\ 1 & -1 \end{pmatrix}. \tag{29}$$

The trace of A is -6 and the determinant is (-5)(-1) - (-4)(1) = 9. So $c_A(X) = X^2 + 6X + 9 = (X+3)^2$. So the characteristic polynomial has a repeated root of $\lambda_1 = -3$. We form the matrix $B_1 = A + 3I_2$,

$$B_1 = A + 3I_2 = \begin{pmatrix} -2 & -4 \\ 1 & 2 \end{pmatrix}. {30}$$

Performing Gauss-Jordan elimination (or just by inspection) a basis for the kernel is given by $(2,-1)^{\dagger}$. So for v_1 we choose ANY vector which is not a multiple of this vector, for example $v_1 = \mathbf{e}_1 = (1,0)^{\dagger}$. Then we find that $v_2 = B_1 v_1 = (-2,1)^{\dagger}$. So we define

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix} \right), P = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}. \tag{31}$$

Then we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} -3 & 0 \\ 1 & -3 \end{pmatrix}, A = P \begin{pmatrix} -3 & 0 \\ 1 & -3 \end{pmatrix} P^{-1}. \tag{32}$$

The semisimple part is just $S = -3I_2$, and the nilpotent part is:

$$N = B_1 = P \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} P^{-1}. \tag{33}$$

3.2. Three-by-three matrices. This is basically as in the last subsection, except now there are more possible types of A. The first question to answer is: what is the characteristic polynomial of A. Of course we know this is $c_A(X) = \det(XI_3 - A)$. But a faster way of calculating this is as follows. We know that the characteristic polynomial has the form

$$c_A(X) = X^3 - \operatorname{trace}(A)X^2 + tX - \det(A), \tag{34}$$

for some complex number $t \in \mathbb{C}$. Usually $\operatorname{trace}(A)$ and $\det(A)$ are not hard to find. So it only remains to determine t. This can be done by choosing any convenient number $c \in \mathbb{C}$ other than c = 0, computing $\det(cI_2 - A)$ (here it is often useful to choose c equal to one of the diagonal entries to reduce the number of computations), and then solving the one linear equation

$$ct + (c^3 - \operatorname{trace}(A)c^2 - \det(A)) = \det(cI_2 - A),$$
 (35)

to find t. Let's see an example of this:

$$D = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 1 & 2 \\ 0 & -1 & 3 \end{pmatrix}. \tag{36}$$

Here we easily compute $\operatorname{trace}(D) = 6$ and $\det(D) = 8$. Finally to compute the coefficient t, we set c = 2 and we get

$$\det(2I_2 - A) = \det\begin{pmatrix} 0 & -1 & 1\\ -1 & 1 & -2\\ 0 & 1 & -1 \end{pmatrix} = 0.$$
(37)

Plugging this in, we get

$$(2)^3 - 6(2)^2 + t(2) - 8 = 0 (38)$$

or t = 12, i.e. $c_A(X) = X^3 - 6X^2 + 12X - 8$. Notice from above that 2 is a root of this polynomial (since $\det(2I_3 - A) = 0$). In fact it is easy to see that $c_A(X) = (X - 2)^3$.

Now that we know how to compute $c_A(X)$ in a more efficient way, we can begin our analysis. There are three cases depending on whether $c_A(X)$ has three distinct roots, two distinct roots, or only one root.

Three roots: Suppose that $c_A(X) = (X - \lambda_1)(X - \lambda_2)(X - \lambda_3)$ where $\lambda_1, \lambda_2, \lambda_3$ are distinct. For each i = 1, 2, 3 define $B_i = \lambda_1 I_3 - A$. By Gauss-Jordan elimination, for each B_i we can compute a basis for $\ker(B_i)$. In fact each $\ker(B_i)$ has dimension 1, so we can find a vector v_i such that $E_{\lambda_1} = \ker(B_i) = \operatorname{span}(v_i)$. We form a basis $\mathbf{B} = (v_1, v_2, v_3)$ and the transition matrix $P = (v_1|v_2|v_3)$. Then we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}, A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} P^{-1}.$$
 (39)

We also have S = A and N = 0.

Let's see how this works in an example. Consider the matrix

$$A = \begin{pmatrix} 7 & -7 & 2 \\ 8 & -8 & 2 \\ 4 & -4 & 1 \end{pmatrix}. \tag{40}$$

It is easy to see that trace(A) = 0 and also det(A) = 0. Finally we consider the determinant of $I_3 - A$. Using cofactor expansion along the third column, this is:

$$\det \begin{pmatrix} -6 & 7 & -2 \\ -8 & 9 & -2 \\ -4 & 4 & 0 \end{pmatrix} = -2((-8)4 - 9(-4)) - (-2)((-6)4 - 7(-4)) = -2(4) + 2(4) = 0.$$
 (41)

So we have the linear equation

$$1^{3} - 0 * 1^{2} + t * 1 - 0 = 0, t = -1.$$

$$(42)$$

Thus $c_A(X) = X^3 - X = (X+1)X(X-1)$. So A has the three eigenvalues $\lambda_1 = -1, \lambda_2 = 0, \lambda_3 = 1$. We define $B_1 = A - (-1)I_3, B_2 = A, B_3 = A - I_3$. By Gauss-Jordan elimination we find

$$E_{-1} = \ker(B_1) = \operatorname{span}\left(\begin{pmatrix} 3\\4\\2 \end{pmatrix}\right), E_0 = \ker(B_2) = \operatorname{span}\left(\begin{pmatrix} 1\\1\\0 \end{pmatrix}\right),$$
$$E_1 = \ker(B_3) = \operatorname{span}\left(\begin{pmatrix} 2\\2\\1 \end{pmatrix}\right).$$

We define

$$\mathcal{B} = \left(\begin{pmatrix} 3\\4\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\2\\1 \end{pmatrix} \right), P = \begin{pmatrix} 3 & 1 & 2\\4 & 1 & 2\\2 & 0 & 1 \end{pmatrix}. \tag{43}$$

Then we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, A = P \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1}.$$

$$(44)$$

Two roots: Suppose that $c_A(X)$ has two distinct roots, say $c_A(X) = (X - \lambda_1)^2 (X - \lambda_2)$. Then we form $B_1 = A - \lambda_1 I_3$ and $B_2 = A - \lambda_2 I_3$. By performing Gauss-Jordan elimination, we find bases for $E_{\lambda_1} = \ker(B_1)$ and for $E_{\lambda_2} = \ker(B_2)$. There are two cases depending on the dimension of E_{λ_1} .

The first case is when E_{λ_1} has dimension 2. Then we have a basis (v_1, v_2) for E_{λ_1} and a basis v_3 for E_{λ_2} . With respect to the basis $\mathcal{B} = (v_1, v_2, v_3)$ and defining $P = (v_1|v_2|v_3)$, we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}, A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} P^{-1}.$$
 (45)

In this case S = A and N = 0.

The second case is when E_{λ_1} has dimension 2. Using Gauss-Jordan elimination we find a basis for $E_{\lambda_1}^{\text{gen}} = \ker(B_1^2)$. Choose any vector $v_1 \in E_{\lambda_1}^{\text{gen}}$ which is not in E_{λ_1} and define $v_2 = B_1 v_1$. Also using Gauss-Jordan elimination we may find a vector v_3 which forms a basis for E_{λ_2} . Then with respect to the basis $\mathcal{B} = (v_1, v_2, v_3)$ and forming the transition matrix $P = (v_1|v_2|v_3)$, we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 1 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}, A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 1 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} P^{-1}.$$
 (46)

Also we have

$$[S]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix}, S = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} P^{-1}, \tag{47}$$

and

$$[N]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, A = P \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}.$$
 (48)

Let's see how this works in an example. Consider the matrix

$$A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & -1 \\ -1 & 0 & 2 \end{pmatrix}. \tag{49}$$

It isn't hard to show that $c_A(X) = (X-3)^2(X-2)$. So the two eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = 2$. We define the two matrices

$$B_1 = A - 3I_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & -1 \end{pmatrix}, B_2 = A - 2I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 0 \end{pmatrix}.$$
 (50)

By Gauss-Jordan elimination we calculate that $E_2 = \ker(B_2)$ has a basis consisting of $v_3 = (0, 1, 1)^{\dagger}$. By Gauss-Jordan elimination, we find that $E_3 = \ker(B_1)$ has a basis consisting of $(0, 1, 0)^{\dagger}$. In particular it has dimension 1, so we have to keep going. We have

$$B_1^2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}. \tag{51}$$

By Gauss-Jordan elimination (or inspection), we conclude that a basis consists of $(1,0,-1)^{\dagger}$, $(0,1,0)^{\dagger}$. A vector in $E_3^{\text{gen}} = \ker(B_1^2)$ which isn't in E_3 is $v_1 = (1,0,-1)^{\dagger}$. We define $v_2 = B_1 v_1 = (0,1,0)^{\dagger}$. Then with respect to the basis

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right), P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}. \tag{52}$$

we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}, A = P \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} P^{-1}.$$
 (53)

We also have that

$$[S]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}, S = P \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix} P^{-1} = \begin{pmatrix} 3 & 0 & 0 \\ -1 & 3 & -1 \\ -1 & 0 & 2 \end{pmatrix}, \tag{54}$$

$$[N]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N = P \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$
 (55)

One root: The final case is when there is only a single root of $c_A(X)$, say $c_A(X) = (X - \lambda_1)^3$. Again we form $B_1 = A_1 - \lambda_1 I_3$. This case breaks up further depending on the dimension of $E_{\lambda_1} = \ker(B_1)$. The simplest case is when E_{λ_1} is three-dimensional, because in this case A is diagonal with respect to ANY basis and there is nothing more to do.

Dimension 2 Suppose that E_{λ_1} is two-dimensional. This is a case in which both G_1 and G_2 are nontrivial. We begin by finding a basis (w_1, w_2) for E_{λ_1} . Choose any vector v_1 which is not in E_{λ_1} and define $v_2 = B_1 v_1$. Then find a vector v_3 in E_{λ_1} which is NOT in the span of v_2 . Define the basis $\mathcal{B} = (v_1, v_2, v_3)$ and the transition matrix $P = (v_1|v_2|v_3)$. Then we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 1 & \lambda_1 & 0 \\ 0 & 0 & \lambda_1 \end{pmatrix}, A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 1 & \lambda_1 & 0 \\ 0 & 0 & \lambda_1 \end{pmatrix} P^{-1}.$$
 (56)

Notice that there is a Jordan block of size 2 and a Jordan block of size 1. Also, $S = \lambda_1 I_3$ and we have $N = B_1$.

Let's see how this works in an example. Consider the matrix

$$A = \begin{pmatrix} -1 & -1 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & -2 \end{pmatrix}. \tag{57}$$

It is easy to compute $c_A(X) = (X+2)^3$. So the only eigenvalue of A is $\lambda_1 = -2$. We define $B_1 = A - (-2)I_3$, and we have

$$B_1 = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \tag{58}$$

By Gauss-Jordan elimination, or by inspection, we see that $E_{-2} = \ker(B_1)$ has a basis $((1,1,0)^{\dagger},(0,0,1)^{\dagger})$. Since this is 2-dimensional, we are in the case above. So we choose any vector not in E_{-2} , say $v_1 = (1,0,0)^{\dagger}$. We define $v_2 = B_1 v_1 = (1,1,0)^{\dagger}$. Finally, we choose a vector in E_{λ_1} which is not in the span of v_2 , say $v_3 = (0,0,1)^{\dagger}$. Then we define

$$\mathcal{B} = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right), P = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \tag{59}$$

We have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} -2 & 0 & 0\\ 1 & -2 & 0\\ 0 & 0 & -2 \end{pmatrix}, A = P \begin{pmatrix} -2 & 0 & 0\\ 1 & -2 & 0\\ 0 & 0 & -2 \end{pmatrix} P^{-1}.$$
 (60)

We also have $S = -2I_3$ and $N = B_1$.

Dimension One In the final case for three by three matrices, we could have that $c_A(X) = (X - \lambda_1)^3$ and $E_{\lambda_1} = \ker(B_1)$ is one-dimensional. In this case we must also have $\ker(B_1^2)$ is two-dimensional. By Gauss-Jordan we compute a basis for $\ker(B_1^2)$ and then choose ANY vector v_1 which is not contained in $\ker(B_1^2)$. We define $v_2 = B_1v_1$ and $v_3 = B_1v_2 = B_1^2v_1$. Then with respect to the basis $\mathcal{B} = (v_1, v_2, v_3)$ and the transition matrix $P = (v_1|v_2|v_3)$, we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 1 & \lambda_1 & 0 \\ 0 & 1 & \lambda_1 \end{pmatrix}, A = P \begin{pmatrix} \lambda_1 & 0 & 0 \\ 1 & \lambda_1 & 0 \\ 0 & 1 & \lambda_1 \end{pmatrix} P^{-1}.$$
 (61)

We also have $S = \lambda_1 I_3$ and $N = B_1$.

Let's see how this works in an example. Consider the matrix

$$A = \begin{pmatrix} 5 & -4 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 3 \end{pmatrix}. \tag{62}$$

The trace is visibly 9. Using cofactor expansion along the third column, the determinant is +3(5*1-1(-4)) = 27. Finally, we compute $\det(3I_3 - A) = 0$ since $3I_3 - A$ has the zero vector for its third column. Plugging in this gives the linear relation

$$(3)^3 - 9(3)^2 + t(3) - 27 = 0, t = 27. (63)$$

So we have $c_A(X) = X^3 - 9X^2 + 27X - 27$. Also we see from the above that X = 3 is a root. In fact it is easy to see that $c_A(X) = (X - 3)^3$. So A has the single eigenvalue $\lambda_1 = 3$.

We define $B_1 = A_1 - 3I_3$, which is

$$B_1 = \begin{pmatrix} 2 & -4 & 0 \\ 1 & -2 & 0 \\ 2 & -3 & 0 \end{pmatrix}. \tag{64}$$

By Gauss-Jordan elimination we see that $E_3 = \ker(B_1)$ has basis $(0,0,1)^{\dagger}$. Thus we are in the case above. Now we compute

$$B_1^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & -2 & 0 \end{pmatrix}. \tag{65}$$

Either by Gauss-Jordan elimination or by inspection, we see that $\ker(B_1^2)$ has basis $((2,1,0)^{\dagger},(0,0,1)^{\dagger})$. So for v_1 we choose any vector not in the span of these vectors, say $v_1 = (1,0,0)^{\dagger}$. Then we define $v_2 = B_1 v_1 = (2,1,2)^{\dagger}$ and we define $v_3 = B_1 v_2 = B_1^2 v_1 = (0,0,1)^{\dagger}$. So with respect to the basis and transition matrix

$$\mathcal{B} = \left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\2 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right), P = \begin{pmatrix} 1 & 2 & 0\\0 & 1 & 0\\0 & 2 & 1 \end{pmatrix}, \tag{66}$$

we have

$$[A]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 1 & 3 \end{pmatrix}, A = P \begin{pmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 1 & 3 \end{pmatrix} P^{-1}.$$
 (67)

We also have $S = 3I_3$ and $N = B_1$.