MORE MATLAB INSTRUCTIONS

1. Plotting functions

In this section, the basics of plotting functions in MATLAB are described. Throughout we work with the example of two functions, $f(t)=(2 t+1) e^{-t} \sin (t)$, and $g(t)=(t-1) e^{-t} \cos (t)$.
Step 1, Specify the domain: Functions are defined on an interval called the domain. To plot the function in MATLAB, you need to specify the domain. Every domain has a left endpoint, a, and a right endpoint, b. Of course MATLAB does not plot the value of the function at every point between the a and b, only finitely many points with a regular spacing h. The syntax to specify the domain is,
>> $\mathrm{t}=\mathrm{a}: \mathrm{h}: \mathrm{b}$
For example, to plot our function on the interval $[-1,1]$ with step size 0.05 , the syntax is, >> $\mathrm{t}=-1: 0.05: 1$
One word about this. Technically x is a data type called an array: just the ordered list of the numbers $a, a+h, a+2 h, \ldots$. The syntax for arithmetic with an array in MATLAB is different than the syntax for arithmetic with a number.
Step 2, Specify the function: Here is a list of common operations used to define functions, and the corresponding syntax in MATLAB. In the list, $y(t)$ and $z(t)$ are names for functions or pieces of functions that are already specified.

Operation	MATLAB Syntax
$y(t)+z(t)$	$\mathrm{y}+\mathrm{z}$
$y(t) z(t)$	$\mathrm{y} \cdot * \mathrm{z}$
$y(t)^{n}$	$\mathrm{y} \cdot \mathrm{n}^{2}$
$y(t) / z(t)$	$\mathrm{y} \cdot / \mathrm{z}$
$\sin (y(t))$	$\sin (\mathrm{y})$
$\cos (y(t))$	$\cos (\mathrm{y})$
$e^{y(t)}$	$\exp (\mathrm{y})$
$\ln (y(t))$	$\log (\mathrm{y})$
$\log _{10}(y(t))$	$\log 10(\mathrm{y})$

For example, if the range t has already been defined, the function $(2 t+1) e^{-t} \sin (t)$ is specified by, >> $\mathrm{y}=(2 . * \mathrm{t}+1$).* $\exp (-1 . * \mathrm{t}) . * \sin (\mathrm{t})$ Similarly, the function $(t-1) e^{-t} \cos (t)$ is specified by,

```
    >> z = ( t - 1 ).* exp( -1.* t ).* cos( t )
```

Step 3, Plot the function: The syntax to produce a 2D-plot whose domain is t and whose function is y is,

```
    >> h = plot(t,y)
```

Note, you do not need to say " $h=$ ", but this can be useful if you want to manipulate the plot later. MATLAB will produce the plot in a new window.

Step 4, Plotting a parametrized curve; Several plots at once: MATLAB can plot a parametrized figure. For instance, for the parametrized curve (y, z) where $y(t)=(2 t+1) e^{-t} \sin (t)$, $z(t)=(t-1) e^{-t} \cos (t)$, the syntax is,

$$
\text { >> i = plot }(\mathrm{y}, \mathrm{z})
$$

where y and z are specified as above. Note that when plotting parametrized curves, it is still necessary to specify the t-domain. But t doesn't explicitly appear in the syntax of the plot.

Also, MATLAB can plot several graphs (or parametrized curves) simultaneously. For simplicity, think of a graph as a parametrized curve $(t, y(t))$. For a number of parametrized curves, say $\left(y_{1}(t), z_{1}(t)\right),\left(y_{2}(t), z_{2}(t)\right)$, the syntax to plot both of these curves in a single figure is, >> j $=\operatorname{plot}(y 1, z 1, y 2, z 2)$
Any number of curves can be plotted in a single figure: just write $\operatorname{plot}(y 1, z 1, \ldots, y n, z n)$, where the functions $y 1, \ldots, y n$ and $z 1, \ldots, z n$ have already been specified. To simultaneously graph the functions y and z above over the interval t, the syntax is,

```
>> k = plot(t,y,t,z)
```

Step 5, Print or export your plot: To either print your plot or to export it as a JPEG file, click on the "File" button of the new window and then click on "Print" or "Export" in the pop-up menu. There are other extras that you can find out by experimenting (such as adding labels to your axes).

