18.034, Honors Differential Equations
 Prof. Jason Starr

$$
\text { Lectures } 33+34 \quad 4 / 28+4 / 30 / 04
$$

1. Began to discuss nonlinear systems and the relation to linear systems, e.g. for a pendulum, $\ddot{\Theta}=\omega^{2} \sin (\theta)$, but for Θ and t small, approximately the same as $\ddot{\Theta}=\omega^{2} \theta$.
2. Defined "structurally stable" (I'm not certain what the conventional term is). Given a nonlinear system $x^{\prime}=F(x, t)$ (or just $=F(x)$ for an autonomous system), a property of the system is structurally stable if for every continuous $G(x, t)$ (or just $\mathrm{G}(\mathrm{x})$ for an autonomous system), there exists $\varepsilon_{0}=\varepsilon_{0}(\mathrm{~F}, \mathrm{G})$ such that the property holds for $\mathrm{X}^{\prime}=\mathrm{F}+\varepsilon \mathrm{G},|\varepsilon|<\varepsilon_{0}$.

Gave the example of the number of equilibrium points.
Prop: Let $\mathrm{R} \subset \mathbb{R}^{n}$ be a bounded closed region. If
(1) these are no equilibrium points or $\partial \mathrm{R}$
(2) these are only finitely many equilibrium points in Int (R),
(3) every equilibrium point is nondegenerate, i.e. $\left|\frac{\partial \mathrm{F}_{\mathrm{i}}}{\partial \mathrm{R}_{\mathrm{j}}}\right| \neq \varepsilon$ at the equilibrium point, then $\exists \varepsilon_{0}>0$ such that for all $-\varepsilon_{0}<\varepsilon<\varepsilon_{0}$, (1), (2) + (3) hold for $\mathrm{F}+\varepsilon \mathrm{G}$. Moreover the number of equilibrium points is constant.
Pf :- Use the implicit function theorem for $\mathrm{F}+\varepsilon \mathrm{G}=\mathrm{R} \times \mathbb{R} \rightarrow \mathrm{W}$
3. Defined orbits + orbital portrait for a system (obviously closely related to the orbital portraits from Ch.3)

Defined nullclines. Worked through the example

$$
\left\{\begin{array}{l}
x^{\prime}=x y \\
y^{\prime}=x^{2}-y^{2}
\end{array}\right.
$$

Guess these are solutions $y=m x$ and solve to get $m^{2}=\frac{1}{2}$

Orbits look roughly like the contour curves of a monkey saddle.
4. Gave algorithm for sketching an orbital portrait for an autonomous 2D system.

Step 1 : Find all equilibrium points.
Step 2 : For each equilibrium point, draw the "local picture" (if it is nondegenerate + structurally stable)

Step 3 : Draw the nullclines and other "fences" (i.e. curves that help to determine basins of attraction).

Step 4 : Interpolate between the local pictures to give a rough sketch.

Went through the steps for $\left\{\begin{array}{l}x^{\prime}=x(y-1) \\ y^{\prime}=y(x-1)\end{array}\right.$

