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1. Terminology: Let S be a subset of the plane IR 2. An interior point of S is a point (t0,y0)
for which there exits a, b>0 (depending on S and (t0,y0)) such that

 is contained in S. The notationb)yb,-(yxa)ta,-(t 0000 b)yb,-(yxa)ta,-(t 0000

is shorthand for the set of all pairs (t,y) such that byyb-yandatta-t 0000 .

A limit point of S is a point (t,y) that is the limit of a convergent sequence

every term of which is in S. Each point (t,y) of S is a point of S since it is the limit of the

constant sequence :  for all

0,1,2,iyi)(ti,

y)(t,)y,(t ii .0,1,2,i .

The interior of S is the collection of all interior points of S. The closure of S is the set of 

all limit points of S. According to your textbook, a region is a set that is equal to its
interior. This is different than the def’n I gave in lecture (and which many

mathematicians use), that a region is a set R that is contained in the closure of its

interior. According to this terminology, an “open region” is a set that is equal to its
interior, and a “closed region” is a set that is equal to the closure of its interior.

However, I will follow the notation in the book from here on.

Let R be a region (= “open region”) in IR2 and let  be a RD bounded, closed region. In 
other words, (1) D is a subset of R; 

(2) there exists N>0 such that D N][-N,N][-N,D ,

(3) D is the closure of its interior.

Also, since it doesn’t follow automatically from the above, we usually also demand that D
is not empty.

Let f(t,y) be a real-valued function defined on R. Let (t0,y0) be an interior point of D. 

Def’n: A solution of the IVP

y(t))f(t,y(t)

00 y)y(t

defined in D is a pair  consisting of an intervaly(t))(I, b)(a,I  and a real-valued 

function y(t) such that

(0) t0 is in b)(a,

(1) the graph of y(t) is contained in the interior of I 

(2)  is differentiabley(t)

(3) for all t in ,b)(a, y(t))f(t,(t)y'

(4) 00 y)y(t

A solution  is called a y)(I, maximal solution (or a maximally-extended solution) if for 

every solution , the interval I)y,(I 11 1 is contained in I1 and y1 is the restriction of y to I1.

2. The main theorem is this.f(t,y)

Thm [=Thms A.1.1, A.2.3, A.3.1] Let R be a region in the plane, let D R be a 

bounded, closed region, let  be defined on R, and let (t

RD

y)f(t, 0,y0) be an interior point of 
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D. If  is continuous on R, and if the partial derivative),( ytf
y

f
 is everywhere defined

and continuous on R, then there exists a maximal solution (I,y) of the IVP:

y)f(t,y'

00 y)y(t

Moreover, denoting ,  and  exists--- call them  & y(b)---

and ,  are 

b)(a,I y(t)lim
at

y(t)lim
bt

y(a)

y(a))(a, y(b))(b, boundary points of D i.e points of D that are not interior

points.

This statement is a bit complicated. What it really says is this:
(1) Existence: There exists an interval  contains tb)(a, 0 and a solution y(t) of the

IVP defined on .b)(a,

(2) Uniqueness: If y1(t) is any solution of y(t) defined on , then yb)(a, 1(t)=y(t)

for all t in (a, .b)

(3) Maximal extendability: A formal consequence of (1) & (2) is that there exists 
a solution where (a,b) is the largest possible interval on which any solution is 

defined.

(4) Endpoints of y: The endpoints of the graph of y(t) lie on the boundary of D.

Picture
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The proof of the theorem proceeds in several stages. Most of the proof is carried out after 
replacing D by a small rectangle containing (t0,y0) (at the end, it will be shown how to deduce

the theorem from this case). 

3. Shrinking Di Lipschitz condition.

Because (t0,y0) is an interior point of D, there exists  such that

. Because D is closed, also the closed rectangle 

 is contained in D.

0ba,

Db)+yb,-(ya)+ta,-(t 0000

b)+yb,-(ya)+ta,-(t 0000

The maximum principle states that any continuous function on a bounded, closed region attains

a (finite) maximum at some point in the closed region. It also attains its minimum at some 
point. As a consequence, there exists M>0 such that for all (t,y) in

,b)+yb,-(ya)+ta,-(t 0000 ( , )f t y M .

F

D

graph of y(t). Notice the
endpoints of the graph are on 
the boundary of D.

a b t



Similarly, because 
y

f
 is defined and continuous, there exists L>0, such that for all (t,y) in

b)+yb,-(ya)+ta,-(t 0000 , Lyt
y

f
),( .

This last inequality has a useful consequence.

Def’n: A function f defined on a rectangle b]+yb,-[ya]+ta,-[t 0000  is a Lipschitz with 

respect to y, with Lipschitz constant L, if for every (t,y1) and (t,y2) in the rectangle, 

2 1 2 1( , ) ( , )f t y f t y L y y .

The function f(t,y) is Lipschitz with respect to y, with Lipschitz constant L. To see this, note that

by the mean value theorem, )).(,(),(),( 12312 yyyt
y

f
ytfytf  for some y3 in (y1,y2).

Therefore, since Lyt
y

f
),( 3 , we have 2 1 2( , ) ( , )f t y f t y L y y1  for all (t,y1) and (t,y2) in

the rectangle. 

Let c>0 be any positive number less than min
1

, ,
2

b
a
M L

. Observe that each of
1

, ,
2

b
a
M L

 is 

positive, so also c is positive. The rectangle we work with is b]yb,-[yXC]t,[t 0000 .

4. Metric spaces; Contraction mappings. 

There is a useful language, sometimes not introduced until 18.100, of metric spaces. The idea is 

to identify and make abstract all properties of Euclidean space that can be stated and proved
using only the distance function.

Def’n: A metric space is a pair (X, ) consisting of a set X and a real-valued function ,

defined for all pairs p,q of elements of X, and that satisfies: 

q)(p,

(0) for all p,q , 0q)(p,

(1)  iff (= “if and only if”) p=q0q)(p,

(2) for all p,q, p)(q,q)(p,  (i.e.  is “symmetric”)

(3) for all p,q and r, r)(q,q)(p,r)(p,  (this is called the “triangle inequality”).

Main example: X= IR n and ((xEucl
1,….,xn), (y1,…..,yn))=

22
22

2
11( )x(y..)x(y)xy nn

the usual Euclidean distance. Also, for X and subset of IRn , the restriction of  to pairs in X 

defines a metric space. 

Eucl

2 very interesting examples.
(1) Let [a,b] be any interval in IR . Let C([a,b], IR ) denote the set of all real-valued continuous

functions y(t) defined on [a,b]. The distance is defined to be )y,(y 21  maximum value of 

)()( 12 tyty  on [a,b]. By the maximum principle, this exists and is finite. If , then

for all t,

0)y,(y 21

0)()( 12 tyty , i.e. . So if(t)y(t)y 12 0)y,(y 12 , then y2= y1. Symmetry of  is 

obvious.

Exercise (not to be handed in): Check that (y1,y2) satisfies the triangle inequality.
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(2) A slight variation of the last example is the one x we are interested in: b),(yB 0  is defined

to be the set of all real-valued continuous functions y(t) on [t0, t0+c] such that for all t, 

b)( 0yty .

In other words, the set of continuous functions whose graph lies in the rectangle

. The distance function is the same as in the previous example. b]yb,-[yxc]t,[t 0000

Def’n: Let  be a metric space. )(X, A contraction mapping on (X,d) is a mapping T defined on X

and taking values in X such that for every pair qp  p,q of elements in X, 

. Let p)(q,T(p))(T(q), 1o  be a real number. The mapping T is an -contraction

mapping if for all p,q, we have p)(q,T(p))(T(q), .

Given a mapping T defined on X and taking values in X, a fixed point is an element p in X such
that , i.e. p ispT(p) fixed by T. Many important theorems in mathematics are descriptions of 

fixed points of certain mappings. One of the simplest theorems is the “contraction mapping
fixed point thm”. 

Thm [Contraction mapping fixed point thm, part I]: Let T be a contraction mapping on )(X, .

There is at most 1 fixed point of T.

Pf: If T has no fixed points, the theorem is vacuously true. Thus suppose there exists a fixed
point p. Let q be any point other than p. Then T(q))(T(p),T(q))(p,  (b/c )T(p)p

< q)(p, (b/c T is a 

contraction
mapping).

Since ,in particularq)(p,T(q))(p, qqT )( . So p is the unique fixed point.

The second half of this theorem will assert that there exists a fixed point of T if T is an -
contraction mapping for some 10  and if X “has no holes”. 

5. The integral operator.

Let y(t) be a continuous function defined on [t0, t0+c] whose graph is contained in R. Define
z = T(y) to be the function defined on [t0, t0+c] by 

.

t

t

dssysf

0

))(,(yz(t) 0

By the fundamental theorem of calculus, z(t) is differentiable and y(t))f(t,(t)z' . In particular,

z(t) is continuous.

Suppose that the graph of z is in a]ya,-[yxc]t,[t 0000 .

Then for every t,

t

t

dssysfytz

0

))(,(0

dssysf

t

t0

))(,(

t

t

sM

0

cM)t-M(t 0 .

Because we chose c<
M

b
, bcM0ytz . Thus z(t) is again an element of

b),(yB 0 .
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So the rule that associates to each y(t) the function z is a mapping T from b),(yB 0  to itself.

Moreover, for any 2 elements y1, y2, for every t,

t

t

dssysfsysftztz

0

))(,())(,( 1212

dssysyL

t

t0

)()(. 12 (b/c of the Lipschitz condition satisfied by f) 

cdsyyL

t

t

)y,(yL)t-(t)y,(yLmax 1201212

0

Because we chose 
L

c
2

1
, we conclude ),(

2

1
1212 yytztz  for all t. Therefore

y1)(y2,
2

1
T(y1))(T(y2), . By part 1 of the contraction mapping fixed point theorem, there is 

at most one fixed point of T. 

6. Tying up loose ends.

Thm: Let R be a region in the plane, let f be a function on R, and let (t0,y0) be a point of R. Let
I=(a,b) be an interval containing t0, and let y1,y2 be differentiable functions on (a,b) whose
graphs are contained in R, both of which solve the IVP

y)f(t,y'

00 y)y(t

If f and
y

f
 are continuous on R, then 21 yy .

Proof: We prove that the restrictions of y1 and y2 to [t0,b] are equal. The proof that the 
restrictions to [a,t0] are equal is almost the same. If 12 yy  on [t0,b], then there exits a 

largest number t1 with such that the restrictions of ybtt 10 1,y2 to [t0,t1] are equal. After

replacing t0 by t1 and y0 by , we may suppose that y)(ty(t)y 121 1 & y2 are sol’ns and for all 

>0, there exists t with  such that ttt 010 (t)y(t)y 12 . Let

b]yb,-[yxa]ta,-[t 0000  be a rectangle contained in R. Let M and L be as above. Because

y2 and y1 are continuous, there exists c<min
LM

b
a

2

1
,,  such that for the restrictions of y1 and

y2 to [t0,t0+c], the graph is contained in [t0,t0+c]x[y0-b,y0+b]. So y1, y2 are in the metric space 
b),(yB 0 . By the fundamental thm of calculus,

)(t) T(y)(,()('y(t)y i00i

00

t

t

i

t

t

i dssysfydssy .

So y1 & y2 are different fixed points of T. This contradicts the contraction mapping fixed point thm. 

The only possible conclusion is that 21 yy

18.034, Honors Differential Equations Lecture 3 

Prof. Jason Starr Page 5 of 5 


