18.034, Honors Differential Equations

Prof. Jason Starr
Lecture 23 4/2/04
0. Defined "integrable" and "of exponential type a". Spent the rest of the hour stating + proving properties of L. Used the notation $L[y(t)]=Y(s)$.
(1) Rigorously proved that if $y, y, \ldots, y^{(n)}$ are of exponential type so, then $L\left[y^{(n)}\right]=s^{n} \bar{Y}(s)-\left(y^{(n-1)}(0)+\ldots+s^{n-1} y(0)\right), s>s_{0}$.
(2) Computed directly that $\mathrm{L}[1]=1 / \mathrm{s}, s>0$
(3) Used (1) to prove that for a polynomial of $\partial \cdot \mathrm{s} \mathrm{n}$, $L[p]=1 / s^{n+1}\left[p^{(n)}(0)+s p^{(n-1)}(0)+\ldots .+s^{n-1} p(0)\right], s>0$ (by using that $L\left[p^{(n+1)}\right]=0$). In particular, $L\left[t^{n}\right]=n!/ s^{n+1}, s>0$.
(4) Used that $\sin (\omega t)$ and $\cos (\omega t)$ satisfy $y^{\prime \prime}=\omega^{2} y$, to deduce, $L[\sin (\omega t)]=\omega / s^{2}+\omega^{2}$. Tested (1) by using that $\cos (\omega t)=-\omega \sin (\omega t) \cos (\omega t)=-\omega \sin (\omega t)$.
(5) For $a>0, L[y(a t)]=\frac{1}{a} Y\left(\frac{s}{a}\right)$ by chze-of-variable.
(6) Introduced notation for the unit step function
$\mathrm{s}(\mathrm{t})=\left\{\begin{array}{l}1, t \geq 0 \\ 0, \mathrm{t}<0\end{array}\right.$
Shift rule:
$L\left[s\left(t-t_{0}\right) y\left(t-t_{0}\right)\right]=e^{-s t_{0}} Y(s)$
for $t_{0}>0$.
(7) $L\left[e^{a t} y(t)\right]=\bar{Y}(s-a)$.
(8) $\mathrm{L}\left[\mathrm{R}\left(\mathrm{t}-\mathrm{t}_{0}\right)\right]=e^{-s t_{0}}$ for $t_{0} \geq 0$.
(9) $L\left[t^{n} y(t)\right]=(-1)^{n} \frac{d^{n}}{d s^{n}} \bar{Y}(s)$. Used this to double-check that $L\left[t^{n}\right]=n!/ s^{n-1}$.

Used (8) $+(1)$ to deduce $L\left[\frac{d}{d s} R\left(t-t_{0}\right)\right]=s e^{-s t_{0}}$ for $t_{0} \geq 0$.
Discussed consistency of this with the derivation
$\int_{-\infty}^{\infty} g(t) \cdot R^{\prime}\left(t-t_{0}\right) d t=-\int_{-\infty}^{\infty} g^{\prime}(t) R\left(t-t_{0}\right) d t=-g^{\prime}\left(t_{0}\right)$
for g a smooth, compactly supported function.

