18.034, Honors Differential Equations

Prof. Jason Starr
Lecture 17
3/12/04

1. Philosophy about what Fourier series are supposed to do and why this is useful for us:

$$
y^{\prime \prime}+a y+b y=f(t)
$$

If $f(t)$ is periodic of period $2 L$, write

$$
f(t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi t}{L}\right)+B_{n} \sin \left(\frac{n \pi t}{L}\right) .
$$

Solve each driven ODE $y_{n}{ }^{\prime \prime}+a y_{n}{ }^{\prime}+b y_{n}=A_{n} \cos \left(\frac{n \pi t}{L}\right)$, etc. and use superposition to find sol'n of original ODE. Useful for analysis of resonant frequency, etc.
2. Defined spaces of real/complex-valued k-times continuously differentiable/ piecewise ktimes cts. diff. functions $\quad \mathrm{C}_{\mathbb{R}} \mathrm{t}[\mathrm{a}, \mathrm{b}], \mathrm{C}_{\mathscr{C}} \mathrm{t}[\mathrm{a}, \mathrm{b}], \mathrm{PC}_{\mathbb{R}}{ }^{\mathrm{t}}[\mathrm{a}, \mathrm{b}], \mathrm{PC}_{\mathscr{C}} \mathrm{t}[\mathrm{a}, \mathrm{b}]$.
3. Defined the inner product $\langle f, g\rangle=\int_{a}^{b} f(t) \bar{g}(t) d t$ and talked about properties (= axioms for Hermitian inner product space). Defined $\|f\|=\sqrt{\langle f, f\rangle}, \partial_{\text {mean }}(f, g)=\|f-g\|$. Mention this is different than the uniform metric.
4. Defined orthogonal and orthonormal sequences.

Checked that $\{1\} \cup\left\{\cos \left(\frac{n \pi t}{L}\right), \sin \left(\frac{n \pi t}{L}\right)\right\}_{n=1,2, \ldots .} \quad$ gives an orthogonal sequence and computed the norms.
5. Posited existence of a Fourier series
$f(t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi t}{L}\right)+B_{n} \sin \left(\frac{n \pi t}{L}\right)$ for $f(\mathrm{t})+\mathrm{PC}_{\mathbb{R}}[-\mathrm{L}, \mathrm{L}]$
Concluded $A_{0}=\frac{1}{2 L} \int_{-L}^{L} f(t) d t, A_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \cos \left(\frac{n \pi t}{L}\right) d t, B_{n}=\frac{1}{L} \int_{-L}^{L} f(t) \sin d t$

