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1. Philosophy about what Fourier series are supposed to do and why this is useful for us:
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find sol’n of original ODE. Useful for analysis of resonant frequency, etc. 

2. Defined spaces of real/complex-valued k-times continuously differentiable/ piecewise k-
times cts. diff. functions C IR t [a,b], C  Cl, t[a,b], PCIR

t [a,b], PC ,  t[a,b]. Cl
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 f,g  and talked about properties (= axioms for (t)dtgf(t) 
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Hermitian inner product space). Defined f f f , , ∂mean g f , ( ) = f − g . Mention this <
 >= 

is different than the uniform metric. 

4. Defined orthogonal and orthonormal sequences.  

Checked that { }1 ∪
⎛
⎜
⎝ 

⎧
⎨
⎩ 
cos 

πt n 
L 

⎞
⎟
⎠ 
, 

π⎛
⎜
⎝ 

t n 
sin 

L 
⎞
⎟
⎠ 

⎫
⎬
⎭ 

 gives an orthogonal sequence and 
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computed the norms. 

5. Posited existence of a Fourier series  
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