18.034, Honors Differential Equations
 Prof. Jason Starr
 Lecture 14
 3/5/04

1. Discussed linear differential operators:

$$
L=a_{n}(t) D_{n}+a_{n-1}(t) D^{n-1}+\ldots . .+a_{1}(t) D+a_{0}(t)
$$

A. Bilinearity of $\mathrm{L}[\mathrm{y}]$
B. Definition of composition of linear operators

$$
\left(L_{1} \cdot L_{2}\right)[y]=L_{1}\left[L_{2}[y]\right]
$$

C. $L_{1} \circ L_{2} \neq L_{2} \circ L_{1}$. But if L_{1}, L_{2} are const. coeff. operators, $L_{1} \circ L_{2}=L_{2} \circ L_{1}$,
D. Discussed notation $p(D)$. Gives an association
\{Polynomials in 1-var\} $\quad \rightarrow \quad$ \{const. coeff. lin. diff. op's $\}$.
This map is compatible $\mathrm{w} /$ addition + scaling $\&\left(p_{1} \bullet p_{2}\right)(D)=p_{1}(D) \bullet p_{2}(D)$. (so really an isom. of rings, but I didn't say this).
2. Used E.S.R. to "prove" that for the lin. diff. operator $p(D) \mathrm{w} /$ factor.
$p(z)=\left(z-\lambda_{1}\right)^{/_{1}}+\ldots+\left(z-\lambda_{1}\right)^{/_{0}}$, gen'l sol'n is $y(t)=e^{\lambda_{1} t} h_{1}(t)+\ldots .+e^{\lambda_{0} t} h_{0}(t), h_{1} \bullet(t)$ a poly. of degree $\leq I_{i}-1$. Compared \# of params.
3. Discussed variant if $p(z)$ has real coeffs.,

$$
\begin{aligned}
p(z) & =\left(z-r_{1}\right)^{m_{1}} \ldots\left(z-r_{v}\right)^{m_{v}}\left(z-\lambda_{1}\right)^{n_{0}}\left(z-\bar{\lambda}_{1}\right)^{n_{1}} \ldots\left(z-\lambda_{w}\right)^{n_{w}}\left(z-\bar{\lambda}_{w}\right)^{n_{w}} \\
y= & e^{r_{1} t} h_{1}(t)+\ldots+e^{r_{v} t} h_{v}(t)+e^{a_{1} t} \cos \left(\beta_{1} t\right) g_{1}(t)+e^{a_{1} t} \sin \left(\beta_{1} t\right) f_{1}(t)+\ldots \\
& +e^{a_{v} t} \cos \left(\beta_{v} t\right) g_{v}(t)+e^{a_{v} t} \sin \left(\beta_{v} t\right) f_{v}(t)
\end{aligned}
$$

