
Solutions of Spring 2008 Final Exam


1. (a) The isocline for slope 0 is the pair of straight lines y = ±x. The direction field along 
these lines is flat.


The isocline for slope 2 is the hyperbola on the left and right of the straight lines. The

direction field along this hyperbola has slope 2.


The isocline for slope −2 is the hyperbola above and below the straight lines. The direction 
field along this hyperbola has slope −2. 

(b) The sketch should have the following features: 

The curve passes through (−2, 0). The slope at (−2, 0) is (−2)2 − (0)2 = 4. 

Going backward from (−2, 0), the curve goes down (dy/dx > 0), crosses the left branch 
of the hyperbola x2 − y2 = 2 with slope 2, and gets closer and closer to the line y = x but 
never touches it. 

Going forward from (−2, 0), the curve first goes up, crosses the left branch of the hyperbola 
x2 − y2 = 2 with slope 2, and becomes flat when it intersects with y = −x. Then the 
curve goes down and stays between y = −x and the upper branch of the hyperbola 
x2 − y2 = −2, until it becomes flat as it crosses y = x. Finally, the curve goes up again 
and stays between y = x and the right branch of the hyperbola x2 − y2 = 2 until it leaves 
the box. 

(c) f(100) � 100 

(d) It follows from the picture in (b) that f(x) reaches a local maximum on the line y = −x. 
Therefore f(a) = −a. 

(e) Since we know f(−2) = 0, to estimate f(−1) with two steps, the step size is 0.5. At each 
step, we calculate 

xn = xn−1 + 0.5, yn = yn−1 + 0.5(x 2 
n−1 − yn

2 
−1) 

The calculation is displayed in the following table. 

− 

−

n xn yn 0.5(x2 
n yn

2 ) 
0 −2 0 2 
1 −1.5 2 −0.875 
2 1 1.125 

The estimate of f(−1) is y2 = 1.125. 

2.	 (a) The equation is ẋ = x(x − 1)(x − 2). The phase line has three equilibria x = 0, 1, 2. 

For x < 0, the arrow points down. 

For 0 < x < 1, the arrow points up. 

For 1 < x < 2, the arrow points down. 

For x > 2, the arrow points up. 

(b) The horizontal axis is t and the vertical axis is x. There are three constant solutions 
x(t) � 0, 1, 2. Their graphs are horizontal.


Below x = 0, all solutions are decreasing and they tend to −≈.
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Between x = 0 and x = 1, all solutions are increasing and they approach x = 1. 
Between x = 1 and x = 2, all solutions are decreasing and they approach x = 1. 
Above x = 2, all solutions are increasing and they tend to +≈. 

(c) A point of inflection (a, x(a)) is where ẍ changes sign. In particular, ẍ(a) must be zero. 
Differentiating the given equation with respect to t, we have 

ẍ = 2ẋ − 6xẋ + 3x 2 ẋ = ẋ(2 − 6x + 3x 2) 

If x(t) is not a constant solution, ẋ(a) = 0 so that x(a) must satisfy ∞

2 − 6x(a) + 3x(a)2 = 0 √ x(a) = 1 ± �1
3 
. 

(d) Typo in the original version: The material being added into the reactor should be Bo 
instead of Ct. 
Let x(t) be the number of moles of Bo in the reactor at time t. The rate of loading is 2 
moles per year. Hence x(t) satisfies ẋ = −kx + 2, where k is the decay rate of Bo. Since 
the half life of Bo is 2 years, e−k·2 = 1/2 so that k = (ln 2)/2. Therefore we have 

ln 2 
ẋ = − x + 2. 

2 

The initial condition is x(0) = 0. 

(e) The differential equation is linear. Since we have 

3 
y � + y = x 

x 

an integrating factor is given by 

3 3 exp dx = exp(3 ln x) = x . 
x 

Multiply the above equation by x3 and integrate: 

(x 3 y)� = x 3 y � + 3x 2 y = x 4 ∗ x 3 y = 
1

5 
x 5 + c 

Since y(1) = 1, we have c = 4/5 and 

1 2 4 
−3 y = x + x . 

5 5 

3. (a) Express all complex numbers in polar form: 

ie2it i�/2 2ite e 1 i(2t+�/2−�/4) 1 i(2t+�/4) 

1 + i 
= �

2e
= �

2 
e = �

2 
e 

i�/4 

The real part is 

ie2it 1 � 
Re = cos 2t + . 

1 + i 
�

2 4 
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(b) The trajectory is an outgoing, clockwise spiral that passes through 1. 

(c) The polar form of 8i is 8ei�/2 . Its three cubic roots are 

i�/62e = 2 cos 
� 

+ 2i sin 
� 

= 
�

3 + i,
6 6 

i(�/6+2�/3)2e = 2 cos 
5� 

+ 2i sin 
5� 

= −
�

3 + i,
6 6 

2e i(�/6+4�/3) = 2e 3i�/2 = −2i. 

4.	 (a) Let xp(t) = at2 + bt + c. Plug it into the left hand side of the equation 

ẍ + 2ẋ + 2x = (2a) + 2(2at + b) + 2(at2 + bt + c)


= 2at2 + (4a + 2b)t + (2a + 2b + 2c)


and compare coefficients


2a = 1, 4a + 2b = 0, 2a + 2b + 2c = 1.


1 2
The solution is a = 1/2, b = −1, c = 1. Therefore xp(t) = t − t + 1. 
2 

(b) The characteristic polynomial is p(s) = s2 + 2s + 2. Using the ERF and linearity, 

e−2t 1 e−2t 1 
xp(t) = + = + 

p(−2) p(0) 2 2 

(c) Consider the complex equation 

z̈ + 2ż + 2z = e it . 

For any solution zp, its imaginary part xp = Im zp satisfies the real equation 

ẍ + 2ẋ + 2x = sin t.


The ERF provides a particular solution of the complex equation


it it ite e e 1 
zp(t) = 

p(i) 
= 

1 + 2i 
= �

5 ei� 
= �

5 
e i(t−�) 

where λ is the polar angle of 1 + 2i. Take the imaginary part of zp


1

xp(t) = Im zp(t) = �

5	
sin(t − λ) 

This is a sinusoidal solution of the real equation. Its amplitude is 1/
�

5. 

(d) If x(t) = t3 is a solution, then q(t) = ẍ + 2ẋ + 2x = 6t + 6t2 + t3 . 

(e) The general solution is	 x(t) = t3 + xh(t), where xh(t) is a solution of the associated 
homogeneous equation. Since the characteristic polynomial s2 + 2s + 2 has roots −1 ± i, 

x(t) = t3 + xh(t) = t3 + c1e −t cos t + c2e −t sin t. 
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5.	 (a) See the formula sheet for the definition of sq(t). The graph of f(t) is a square wave of 
period 2�. It has a horizontal line segment of height 1 in the range −�/2 < t < �/2 and 
a horizontal line segment of height −1 in the range �/2 < t < 3�/2. 

(b) Replace t by t + �/2 in the definition of sq(t) 
�	 � � � � � 

� � � 4 � � � 1 3� 1 5� 
f(t) = sq t + = sin t + + sin 3t + + sin 5t + + . . . 

2 � 2 3 2 5 2 

4 1 1 
= cos t − cos 3t + cos 5t + . . . 

� 3 5 

(c) First consider the complex equation 

z̈ + z = e int for a positive integer n. 

The characteristic polynomial is p(s) = s2 + 1. One of the ERFs provides a particular 
solution of the complex equation 

int inte e
zp(t) = 

p(in)
=

1 − n
, n = 1 ∞

2 

teit teint


zp(t) = = , n = 1

p�(i) 2i 

The imaginary parts of these functions 

eint sin nt 
up(t) = Im 

2 = 
2 , n ∞= 1 

1 − n 1 − n

teit 1 
up(t) = Im t cos t , n = 1 

2i 
= −

2 

satisfy the imaginary part of the above complex equation, namely 

ü + u = sin nt. 

By linearity, a solution of ẍ + x = sq(t) is given by 

4 1 1 sin 3t 1 sin 5t 
xp(t) = t cos t + + + . . . . 

� 
−

2 3 
· 
1 − 32 5 

· 
1 − 52 

6.	 (a) For t < 0, the graph is flat on t-axis. 

For 0 < t < 1, the graph is flat at 1 unit above t-axis. 

For 1 < t < 3, the graph is flat at 1 unit below t-axis. 

For 3 < t < 4, the graph is flat at 1 unit above t-axis. 

For t > 4, the graph is flat on t-axis. 

(b)	 v(t) = [u(t) − u(t − 1)] − [u(t − 1) − u(t − 3)] + [u(t − 3) − u(t − 4)]

= u(t) − 2u(t − 1) + 2u(t − 3) − u(t − 4)
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(c) The graph coincides with t-axis for all t, except for two upward spikes at t = 0, 3 and two 
downward spikes at t = 1, 4. 

(d) v̇(t) = �(t) − 2�(t − 1) + 2�(t − 3) − �(t − 4) 

(e) By the fundamental solution theorem (a.k.a. Green’s formula), 

� t b(t) 

x(t) = (q ≡ w)(t) = q(t − π)w(π) dπ = w(π) dπ. 
0 a(t) 

Now q(t − π) = 1 only for 0 < t − π < 1, or t − 1 < π < t, and it is zero elsewhere. 
Therefore the upper limit b(t) equals t. The lower limit a(t) is t − 1 if t − 1 > 0, or 0 if 
t − 1 < 0. In other words, a(t) = (t − 1)u(t − 1). 

1 1 
7. (a) The transfer function is W (s) = = . 

p(s) 2s2 + 8s + 16 

(b) The unit impulse response w(t) is the inverse Laplace transform of W (s). In other words, 

1 1 L(w(t)) = 
2s2 + 8s + 16 

= 
2[(s + 2)2 + 4] 

1 1 ∗ L(e 2t w(t)) = 
2(s2 + 4) 

= 
4 
L(sin 2t) 

Therefore e 2t w(t) = 
1 

sin 2t, and w(t) = 
1 

e −2t sin 2t. 
4 4 

(c) Take the Laplace transform of 

p(D)x = 2ẍ(t) + 8ẋ(t) + 16x(t) = sin t 

with the initial conditions x(0+) = 1, ẋ(0+) = 2. This yields 

2[s 2X(s) − s − 2] + 8[sX(s) − 1] + 16X(s) = 
1 

s2 + 1 
1 1 ∗ X(s) = 

2s2 + 8s + 16 s2 + 1 
+ 2s + 12 

8. (a) The characteristic polynomial of A is 

det(A − �I) = det 
2 − � 12 

= (2 − �)2 − 36 = (� − 8)(� + 4). 
3 2 − � 

Therefore the eigenvalues are � = 8, −4. 

(b) For � = 8, solve (A − 8I)v = 0. Since A − 8I = 
−6 

−
12
6 

, a solution is v = 
2

. 
3 1 

6 12 
For � = −4, solve (A + 4I)v = 0. Since A + 4I = 

3 6 
, a solution is v = −1

. 
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(c) The following is a fundamental matrix for u̇ = Bu 

t 2t 
F (t) = 

e
t 

−e
2te e

Then etB can be computed as F (t)F (0)−1 . 

F (0) = 
1 −1 

, F (0)−1 =
1 1 1 

1 1 2 −1 1 

e tB = F (t)F (0)−1 = 

� 
e
t

t −e
2t 

2t 
� 

1 
� 

1 1 
� 

=
1 

� 
e
t

t + e
2

2

t

t e
t

t − e
2

2

t

t 
� 

e e
· 
2 −1 1 2 e − e e + e

(d) The general solution of u̇ = Bu is 

t 2t 
u(t) = c1 

e
t + c2 

−e
2t = F (t) 

c1 

e e c2 

The given initial condition implies 

2 c1 = F (0)
1 c2 

∗ 
c
c

2

1 = F (0)−1 

1
2

=
2

1 1
1
1 

1
2

= 
3/2 

−1 −1/2 

1 3et + e2t 
Therefore the solution of the initial value problem is u(t) = 

2 3et 2t . − e

9. (a) The phase portrait has the following features: 

• All trajectories start at (0, 0) and run off to infinity. 

• There are straight line trajectories along the lines y = ±x. 

• All other trajectories are tangent to y = x at (0, 0). 

• No two trajectories cross each other. 

(b) Tr A = a + 1, det A = a + 4, � = (Tr A)2 − 4(det A) = (a − 5)(a + 3) 
(i) det A < 0 √ a < −4 
(ii) not for any a 
(iii) � > 0, Tr A < 0 and det A > 0 √ −4 < a < −3 
(iv) � < 0 and Tr A < 0 √ −3 < a < −1; counterclockwise 
(v) � < 0 and Tr A > 0 √ −1 < a < 5 
(vi) � = 0 and Tr A > 0 a = 5 √ 

10. (a) The equilibria are the solutions of 

ẋ = x 2 − y 2 = 0, ẏ = x 2 + y 2 − 8 = 0. 

This implies (x2, y2) = (4, 4), so that (x, y) = (2, 2), (2, −2), (−2, 2), (−2, −2). 

(b) The Jacobian is J(x, y) = 
2x −2y 

. In particular, J(−2, −2) = 
−4 4

. 
2x 2y −4 −4 
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(c) The linearization of the nonlinear system at (−2, −2) is the linear system u̇ = J(−2, −2)u. 
A computation shows that the eigenvalues of J(−2, −2) are −4 ± 4i. The first component 
of u(t) is of the form 

c1e −4t cos 4t + c2e −4t sin 4t = Ae−4t cos(4t − λ). 

This means x(t) � −2 + Ae−4t cos(4t − λ) near (−2, −2). 

(d) Let f(x) = 2x − 3x2 + x3 . The phase line in problem 2(a) shows that ẋ = f(x) has a 
stable equilibrium at x = 1.


The linearization of the nonlinear equation at x = 1 is the linear equation u̇ = f �(1)u =

−u. Its solutions are u(t) = Ae−t . This means x(t) � 1 + Ae−t near x = 1.
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