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Do not turn the page until you are instructed to do so.


Write your name, your recitation leader’s name, and the time of your recitation. Show 
all your work on this exam booklet. When a particular method is requested you must 
use it. No calculators or notes may be used, but there is a table of Laplace transforms 
and other information at the end of this exam booklet. Point values (out of a total 
of 360) are marked on the left margin. The problems are numbered 1 through 10. 
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1. (a) and (b) concern the tritium that is leaking from the Oyster Creek Nuclear Generating 
Station into the aquifer in New Jersey at a certain rate, which we will assume is one kilogram 
per year. The half life of tritium is 12 years. 

[6]	 (a) Ignoring other effects (other sources or sinks of the tritium), set up a differential equation 
for the amount of tritium in the aquifer as a function of time. (For full credit, determine 
any constants in the equation.) 

[6]	 (b) If this leak goes on for a long time, what will the tritium load in the aquifer be? (How 
many kilograms?) 

dy y2 

Parts (c)–(g) of this problem will concern the differential equation = x − . 
dx 4 

[6]	 (c) Let y(x) denote the solution to this equation such that y(1) = 0. Use Euler’s method 
with step size 1

2 to estimate y(2). 



dy y2 

1. Continuing with = x − 
dx 4 

[3] (d) Sketch the isoclines for slopes m = −1, m = 0, and m = 1, on the plane below. 

[3] (e) On the same plane, sketch the graph of the solution y(x) with y(1) = 0. 

[6] (f) For this same solution, suppose that y(x) achieves a minimum at x = a. What is y(a) 
(in terms of a)? 

[6] (g) Estimate the value of y(100). 



2. In (a)–(c) we consider the autonomous equation ẋ = x3 − x2 − 2x. 

[10]	 (a) On the vertical line below, sketch the phase line of this equation. 

[10]	 (b) Sketch the graphs of some solutions. Be sure to include at least one solution with values 
in each interval above, below, and between the critical points. 

[6]	 (c) Suppose x(0) is quite small, say 0.1. For t > 0, x(t) is best approximated by (0.1)eat for 
what value of a? 

dy sin(x)
[10]	 (d) Solve the initial value problem x + 2y = − , y(π) = 0. 

dx x 
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[6] 3. (a) Find a complex number r (expressed as r = a + bi with a, b real) and a positive real

eiωt � π� 

number ω such that Re = 2 cos 2t − . 
r 4 

[6] (b) Express the cube roots of −8i in the form a + bi (with a and b real). 

[8] (c) What is the pseudoperiod of a nonzero solution to ẍ + 2ẋ + 10x = 0? 



[8] 3. (continued) (d) At what circular frequency ω = ωr does the sinusoidal solution to 
ẍ + 2ẋ + 10x = cos(ωt) have the largest amplitude? 

[8] (e) At what circular frequency ω = ωp is the phase lag of the solution to ẍ+2ẋ+10x = cos(ωt) 
equal to π 

2 ? 



4. Let p(D) = D2 + 4D + 8I. 

[10] (a) Find one solution to p(D)x = 8t2 . 

[10] (b) Find one solution to p(D)x = e−t . 

In (c) and (d), suppose that x = t3 is a solution to p(D)x = q(t) 
(where still p(D) = D2 + 4D + 8I). 

[8] (c) What is q(t)? 

[8] (d) What is the solution to p(D)x = q(t) such that x(0) = 0 and ẋ(0) = 2?




[15] 5. (a) Find a periodic solution to ẍ + ωn 
2 x = sq(2t) if one exists. 

[6] 

(b)–(c) concern the function f(t), periodic of period 2π, with f(t) = |t| − π 
2 

(b) Is f(t) even, odd, or neither? 

What is its average value? 

Graph f(t). 

for |t| ≤ π. 

[15] (c) What is the Fourier series of f(t)? 
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6. (a)–(b) The function f(t) is defined by the following graph, in which the hashmarks are 
at unit spacing. 

[6]	 (a) Graph the generalized derivative f ′(t). 

[8]	 (b) Write a formula for f ′(t), using step and delta functions as necessary. Identify in your 
formula the regular part fr

′ (t) and the singular part fs
′ (t). 



6. (continued) Suppose that the unit impulse response of a certain operator p(D) is 
w(t) = u(t)e−t sin(2t). 

[8] (c) Please calculate the solution to p(D)x = u(t)e−t, with rest initial conditions. 

[6] (d) What is the solution to p(D)x = δ(t − 1) with rest initial conditions? 

[8] (e) What is the characteristic polynomial p(s)? 



7. (a)–(c) concern the operator p(D) = D3 + D. 

[8] (a) What is the transfer function of the operator p(D)? 

[10]	 (b) What is the unit impulse response of this operator? 

[10]	 (c) What is the Laplace transform X(s) of the solution to p(D)x = cos(2t) with rest initial 
conditions? 

(s + 1)e−s 

[8]	 (d) Sketch the pole diagram of 
s3 + 2s2 + 2s 
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5 −1 
8. In (a) and (b), A = . 

−1 5 

[8] (a) What are the eigenvalues of A? 

[8] (b) For each eigenvalue, find a nonzero eigenvector. 

(c)–(e) concern a certain 2 × 2 matrix B, whose eigenvalues are known to be 2 and −2. 

[6] (c) What is the trace of B? 

What is the determinant of B? 

1 3 
[8] (d) Suppose also that is an eigenvector for value 2 and is an eigenvector for 

2 4 

value −2. Calculate eBt . 

� � 

1 
[6] (e) What is the solution to u̇ = Bu with u(0) = ? 

1 
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1 2 
9. Let A = , and consider the homogeneous linear system u̇ = Au. 

−2 a 

[6] (a) On the (Tr,Det) plane below, sketch the critical parabola (where the matrix has repeated 
eigenvalues) and sketch line corresponding to the matrices A as a varies. 

[30]	 (b) For each of the following conditions, indicate the values of a (if any) for which the phase 
portrait satisfies the condition. 

(i) Saddle 

(ii) Stable node = nodal sink 

(iii) Unstable node = nodal source 

(iv) Stable spiral = spiral sink 

(v) Unstable spiral = spiral source 

(vi) Stable defective node = defective nodal sink 

(vii) Unstable defective node = defective nodal source 

(viii) Star 

(ix) Center 

(x) Degenerate case 
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ẋ = (y + 1)(y − x + 1) 
10. This problem concerns the nonlinear autonomous system . 

ẏ = (x − 3)(x + y − 1) 

[12] (a) Find the equilibria of this system and plot them on the (x, y) plane below. 
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ẋ = (y + 1)(y − x + 1) 
10. (continued)	 . 

ẏ = (x − 3)(x + y − 1) 

[12] (b) One equilibrium is at (1, 0). Find the Jacobian matrix at this equilibrium. 

[12]	 (c) The equilibrium at (1, 0) is a stable spiral. For large t, the solutions which converge to 
this equilibrium have y-coordinate well-approximated by the function Aeat cos(ωt − φ) for 
some constants A, φ, a, and ω. Some of these constants depend upon the particular solution, 
and some are common to all solutions of this type. Find the values of the ones which are 
common to all such solutions. 
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Operator Formulas 

• Exponential Response Formula: xp = Aert/p(r) solves p(D)x = Aert provided p(r) 6= 0. 

• Resonant Response Formula: If p(r) = 0 then xp = Atert/p′(r) solves p(D)x = Aert 

provided p ′(r) 6= 0. 

Defective matrix formula 

If A is a defective 2× 2 matrix with eigenvalue λ1 and nonzero eigenvector v1, then you can 
solve for w in (A − λ1I)w = v1 and u = eλ1t(tv1 + w) is a solution to u̇ = Au. 

Properties of the Laplace transform 

∞ 

0. Definition:	 L[f(t)] = F (s) = f(t)e −st dt for Re(s) >> 0. 
0− 

1. Linearity:	 L[af(t) + bg(t)] = aF (s) + bG(s). 

2. Inverse transform:	 F (s) essentially determines f(t). 

3. s-shift rule:	 L[eatf(t)] = F (s − a). 

4. t-shift rule:	 L[fa(t)] = e−asF (s), fa(t) = 
f(t − a) if t > a 

. 
0 if t < a 

5. s-derivative rule:	 L[tf(t)] = −F ′ (s). 

6.	 t-derivative rule: L[f ′(t)] = sF (s) [generalized derivative]

L[fr

′ (t)] = sF (s) − f(0+) [f(t) continuous for t > 0]


� t 

7. Convolution rule:	 L[f(t) ∗ g(t)] = F (s)G(s), f(t) ∗ g(t) = f(τ)g(t − τ)d τ . 
0 

1 
8. Weight function:	 L[w(t)] = W (s) = , w(t) the unit impulse response. 

p(s)

Formulas for the Laplace transform 

1 1	 n! 
L[1] = L[e at] =	 L[tn] = 

sn+1 
L[δa(t)] = e −as 

s s − a 

s ω e−as 

L[cos(ωt)] =	 L[sin(ωt)] = L[ua(t)] = 
s2 + ω2	 s2 + ω2 s 

Fourier series f(t) =	 a

2 
0 + a1 cos(t) + a2 cos(2t) + · · · + b1 sin(t) + b2 sin(2t) + · · · 

1 
� π	 1 π 

am = f(t) cos(mt) dt, bm = f(t) sin(mt) dt 
π 

−π π 
−π 

If sq(t) is the odd function of period 2π which has value 1 between 0 and π, then 

4 sin(3t) sin(5t)
sq(t) = sin(t) + + + · · · 

π 3 5 
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