18.03 Problem Set 7: Part II Solutions

Part I points: 26. 6, 27. 10, 28. 12.
I.26. $e^{-t} \sin (3 t)=\frac{1}{2 i}\left(e^{(-1+3 i) t}-e^{(-1-3 i) t}\right)$, so $\mathcal{L}\left[e^{-t} \sin (3 t)\right]=$
$\frac{1}{2 i}\left(\frac{1}{s-(-1+3 i)}-\frac{1}{s-(-1-3 i)}\right)=\frac{1}{2 i} \frac{(s+1+3 i)-(s+1-3 i)}{(s+1)^{2}+9}=\frac{3}{(s+1)^{2}+9}$.
26. (a) $[10] G(s)=\int_{0}^{\infty} f(a t) e^{-s t} d t$. To make this look more like $F(s)=\int_{0}^{\infty} f(t) e^{-s t} d t$, make the substitution $u=a t$. Then $d u=a d t$ and

$$
G(s)=\int_{0}^{\infty} f(u) e^{-s u / a} \frac{d u}{a}=\frac{1}{a} \int_{0}^{\infty} f(u) e^{-(s / a) u} d u=\frac{1}{a} F\left(\frac{s}{a}\right)
$$

For example, take $f(t)=t^{n}$, so $F(s)=\frac{n!}{s^{n+1}}, g(t)=(a t)^{n}=a^{n} t^{n}, G(s)=\frac{a^{n} n!}{s^{n+1}}$. Now compute $\frac{1}{a} F\left(\frac{s}{a}\right)=\frac{1}{a} \frac{n!}{(s / a)^{n+1}}=\frac{a^{n+1}}{a} \frac{n!}{s^{n+1}}=\frac{a^{n} n!}{s^{n+1}}=G(s)$.
(b) [10] Compute $F(s) G(s)=\int_{0}^{\infty} \int_{0}^{\infty} f(x) e^{-s x} g(y) e^{-s y} d x d y=\iint_{R} f(x) g(y) e^{-s(x+y)} d x d y$, where R is the first quadrant. The suggested substitution is $x=t-\tau, y=\tau$. To convert to these coordinates, note that the Jacobian is $\operatorname{det}\left[\begin{array}{cc}\frac{\partial x}{\partial t} & \frac{\partial x}{\partial \tau} \\ \frac{\partial y}{\partial t} & \frac{\partial y}{\partial \tau}\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]=1$ For fixed t, τ ranges over numbers between 0 and t, and t ranges over positive numbers. Since $x+y=t, F(s) G(s)=\int_{0}^{\infty} \int_{0}^{t} f(t-\tau) g(\tau) e^{-s t} d \tau d t$ $=\int_{0}^{\infty}\left(\int_{0}^{t} f(t-\tau) g(\tau) d \tau\right) e^{-s t} d t=\int_{0}^{\infty}(f(t) * g(t)) e^{-s t} d t=\int_{0}^{\infty} h(t) e^{-s t} d t=H(s)$. (c) $[6] F(s)=\int_{0}^{\infty} f(t) e^{-s t} d \tau=\int_{0}^{1} f(t) e^{-s t} d \tau+\int_{1}^{\infty} 0 e^{-s t} d \tau$. The improper integral converges for any s; the region of convergence is the whole complex plane. Continuing, $F(s)=\left.\frac{1}{-s} e^{-s t}\right|_{0} ^{1}=\frac{1-e^{-s}}{s}$. [Why doesn't this blow up when $s \rightarrow 0$? The numerator goes to zero too, then, and the limit of the quotient (by l'Hopital for example) is 1.]
27. (a) [4] The Laplace transform of the equation $a \dot{w}+b w=\delta(t)$ is $a s W(s)+b W(s)=1$. Solve: $W(s)=\frac{1}{a s+b}=\frac{1 / a}{s+(b / a)}$ This is the Laplace transform of $w(t)=\frac{1}{a} u(t) e^{-b t / a}$.
(b) This is called the "unit ramp response."
(i) [6] $x_{p}=c_{1} t+c_{0}, a c_{1}+b\left(c_{1} t+c_{0}\right)=t, c_{1}=\frac{1}{b}$ (as long as $b \neq 0$), $a c_{1}+b c_{0}=0$ so $c_{0}=-\frac{a}{b^{2}}$, $x_{p}=\frac{1}{b} t-\frac{a}{b^{2}} \cdot x(t)=x_{p}+c e^{-b t / a}$, so $0=x(0)=-\frac{a}{b^{2}}+c$ and $x(t)=u(t)\left(\frac{1}{b} t-\frac{a}{b^{2}}\left(1-e^{-b t / a}\right)\right)$. If $b=0$ then $a \dot{x}=t$, which has general solution $x(t)=\frac{1}{2 a} t^{2}+c . \quad 0=x(0)=c$, so $x(t)=u(t) \frac{1}{2 a} t^{2}$.
(ii) [6] If $b \neq 0: w(t) * t=\int_{0}^{t} \frac{1}{a} e^{-b(t-\tau) / a} \tau d \tau=\frac{1}{a} e^{-b t / a} \int_{0}^{t} e^{b \tau / a} \tau d \tau$. Do this by parts:
$u=\tau, d u=d \tau, d v=e^{b \tau / a} d \tau, v=\frac{a}{b} e^{b \tau / a}, w(t) * t=\frac{1}{a} e^{-b t / a}\left(\left.\tau \frac{a}{b} e^{b \tau / a}\right|_{0} ^{t}-\int_{0}^{t} \frac{a}{b} e^{b \tau / a} d \tau\right)=$ $\frac{1}{a} e^{-t b / a}\left(t \frac{a}{b} e^{b t / a}-\frac{a^{2}}{b^{2}}\left(e^{b t / a}-1\right)\right)=\frac{1}{b} t-\frac{a}{b^{2}}\left(1-e^{-b t / a}\right)$. If $b=0, w(t) * t=\int_{0}^{t} \frac{1}{a} \tau d \tau=\frac{1}{a} \frac{t^{2}}{2}$.
(iii) [6] $a \dot{x}+b x=t$ has Laplace transform $a s X+b X=\frac{1}{s^{2}}$, so $X=\frac{1}{s^{2}(a s+b)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{a s+b}$

Coverup: Multiply by s^{2} and set $s=0$ to get $B=\frac{1}{b}$. Multiply by $a s+b$ and set $s=-\frac{b}{a}$ to get $C=\frac{a^{2}}{b^{2}}$. Here's a clean way to get A : multiply through by s and then take s very large in size. You find $0=A+\frac{C}{a}$, or $A=-\frac{a}{b^{2}}$. So $X=-\frac{a / b^{2}}{s}+\frac{1 / b}{s^{2}}+\frac{a / b^{2}}{s+b / a}$, which is the Laplace transform of $x=-\frac{a}{b^{2}}+\frac{1}{b} t+\frac{a}{b^{2}} e^{-b t / a}$.
If $b=0, a \dot{x}=t$ has Laplace transform $a s X=\frac{1}{s^{2}}$ so $X=\frac{1}{a} \frac{1}{s^{3}}$, and $x=u(t) \frac{1}{a} \frac{1}{2} t^{2}$
28. (a) $[6] w(t)$ has Laplace transform $W(s)=\frac{1}{3 s^{2}+6 s+6}=\frac{1}{3} \frac{1}{(s+1)^{2}+1} \cdot \mathcal{L}[\sin t]=$ $\frac{1}{s^{2}+1}$, so by s-shift $w(t)=\frac{1}{3} u(t) e^{-t} \sin t$.
(b) $[14] W(s)=\frac{1}{s^{4}+1}$. To use partial fractions we need to factor $s^{4}+1$, which is to say we need to find its roots. They are the fourth roots of -1 , which are $r, \bar{r},-r$, and $-\bar{r}$ where $r=\frac{1}{\sqrt{2}}(1+i)$. Now $\frac{1}{s^{4}+1}=\frac{1}{(s-r)(s-\bar{r})(s+r)(s+\bar{r})}=\frac{a}{s-r}+\frac{b}{s-\bar{r}}+\frac{c}{s+r}+\frac{d}{s+\bar{r}}$. Coverup or cross-multiplication will lead to the coefficients. This is not pretty, and (per the web) I don't expect more.
[What I intended to ask was for the weight function for $D^{4}-I$. Now the roots are ± 1 and $\pm i$, so we can write $\frac{1}{s^{4}-1}=\frac{a}{s-1}+\frac{b}{s+1}+\frac{c}{s-i}+\frac{d}{s+i}$. Coverup gives easily $a=$ $b=\frac{1}{4}, c=\frac{i}{4}, d=-\frac{i}{4}$. So $w(t)=u(t) \frac{1}{4}\left(e^{t}+e^{-t}+i e^{i t}-i e^{-i t}\right)=u(t) \frac{1}{2}(\sinh (t)-\sin (t))$. I apologize for the mistake.]

MIT OpenCourseWare
http://ocw.mit.edu

Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

