6. Vector Integral Calculus in Space

6A. Vector Fields in Space

6A-1 Describe geometrically the following vector fields: a) $\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\rho} \quad$ b) $-x \mathbf{i}-z \mathbf{k}$
6A-2 Write down the vector field where each vector runs from (x, y, z) to a point half-way towards the origin.

6A-3 Write down the velocity field \mathbf{F} representing a rotation about the x-axis in the direction given by the right-hand rule (thumb pointing in positive x-direction), and having constant angular velocity ω.

6A-4 Write down the most general vector field all of whose vectors are parallel to the plane $3 x-4 y+z=2$.

6B. Surface Integrals and Flux

6B-1 Without calculating, find the flux of $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ through the sphere of radius a and center at the origin. Take \mathbf{n} pointing outward.

6B-2 Without calculation, find the flux of \mathbf{k} through the infinite cylinder $x^{2}+y^{2}=1$. (Take \mathbf{n} pointing outward.)

6B-3 Without calculation, find the flux of \mathbf{i} through that portion of the plane $x+y+z=1$ lying in the first octant (take \mathbf{n} pointed away from the origin).
$\mathbf{6 B - 4}$ Find $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=y \mathbf{j}$, and $S=$ the half of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ for which $y \geq 0$, oriented so that \mathbf{n} points away from the origin.

6B-5 Find $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where where $\mathbf{F}=z \mathbf{k}$, and S is the surface of Exercise 6B-3 above.
6B-6 Find $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$, and S is the part of the paraboloid $z=x^{2}+y^{2}$ lying underneath the plane $z=1$, with \mathbf{n} pointing generally upwards. Explain geometrically why your answer is negative.
$\mathbf{6 B - 7}^{*}$ Find $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{x^{2}+y^{2}+z^{2}}$, and S is the surface of Exercise 6B-2.
6B-8 Find $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=y \mathbf{j}$ and S is that portion of the cylinder $x^{2}+y^{2}=a^{2}$ between the planes $z=0$ and $z=h$, and to the right of the $x z$-plane; \mathbf{n} points outwards.

6B-9* Find the center of gravity of a hemispherical shell of radius a. (Assume the density is 1 , and place it so its base is on the $x y$-plane.
$\mathbf{6 B - 1 0}$ * Let S be that portion of the plane $-12 x+4 y+3 z=12$ projecting vertically onto the plane region $(x-1)^{2}+y^{2} \leq 4$. Evaluate
a) the area of S
b) $\iint_{S} z d S$
c) $\iint_{S}\left(x^{2}+y^{2}+3 z\right) d S$

6B-11* Let S be that portion of the cylinder $x^{2}+y^{2}=a^{2}$ bounded below by the $x y$-plane and above by the cone $z=\sqrt{(x-a)^{2}+y^{2}}$.
a) Find the area of S. Recall that $\sqrt{1-\cos \theta}=\sqrt{2} \sin (\theta / 2)$. (Hint: remember that the upper limit of integration for the z-integral will be a function of θ determined by the intersection of the two surfaces.)
b) Find the moment of inertia of S about the z-axis. There should be nothing to calculate once you've done part (a).
c) Evaluate $\iint_{S} z^{2} d S$.

6B-12 Find the average height above the $x y$-plane of a point chosen at random on the surface of the hemisphere $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$.

6C. Divergence Theorem

6C-1 Calculate div \mathbf{F} for each of the following fields
a) $x^{2} y \mathbf{i}+x y \mathbf{j}+x z \mathbf{k}$
b)* $3 x^{2} y z \mathbf{i}+x^{3} z \mathbf{j}+x^{3} y \mathbf{k}$
c)* $\sin ^{3} x \mathbf{i}+3 y \cos ^{3} x \mathbf{j}+2 x \mathbf{k}$

6C-2 Calculate $\operatorname{div} \mathbf{F}$ if $\mathbf{F}=\rho^{n}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})$, and tell for what value(s) of n we have $\operatorname{div} \mathbf{F}=0 . \quad$ (Use $\rho_{x}=x / \rho$, etc.)

6C-3 Verify the divergence theorem when $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and S is the surface composed of the upper half of the sphere of radius a and center at the origin, together with the circular disc in the $x y$-plane centered at the origin and of radius a.

6C-4* Verify the divergence theorem if \mathbf{F} is as in Exercise 3 and S is the surface of the unit cube having diagonally opposite vertices at $(0,0,0)$ and $(1,1,1)$, with three sides in the coordinate planes. (All the surface integrals are easy and do not require any formulas.)

6C-5 By using the divergence theorem, evaluate the surface integral giving the flux of $\mathbf{F}=x \mathbf{i}+z^{2} \mathbf{j}+y^{2} \mathbf{k}$ over the tetrahedron with vertices at the origin and the three points on the positive coordinate axes at distance 1 from the origin.

6C-6 Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ over the closed surface S formed below by a piece of the cone $z^{2}=x^{2}+y^{2}$ and above by a circular disc in the plane $z=1$; take \mathbf{F} to be the field of Exercise 6B-5; use the divergence theorem.

6C-7 Verify the divergence theorem when S is the closed surface having for its sides a portion of the cylinder $x^{2}+y^{2}=1$ and for its top and bottom circular portions of the planes $z=1$ and $z=0 ;$ take \mathbf{F} to be
a) $x^{2} \mathbf{i}+x y \mathbf{j}$
b)* $z y \mathbf{k}$
c)* $x^{2} \mathbf{i}+x y \mathbf{j}+z y \mathbf{k} \quad$ (use (a) and (b))

6C-8 Suppose div $\mathbf{F}=0$ and S_{1} and S_{2} are the upper and lower hemispheres of the unit sphere centered at the origin. Direct both hemispheres so that the unit normal is "up", i.e., has positive \mathbf{k}-component.
a) Show that $\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}$, and interpret this physically in terms of flux.
b) State a generalization to an arbitrary closed surface S and a field \mathbf{F} such that div $\mathbf{F}=0$.

6C-9* Let \mathbf{F} be the vector field for which all vectors are aimed radially away from the origin, with magnitude $1 / \rho^{2}$.
a) What is the domain of \mathbf{F} ?
b) Show that $\operatorname{div} \mathbf{F}=0$.
c) Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where S is a sphere of radius a centered at the origin. Does the fact that the answer is not zero contradict the divergence theorem? Explain.
d) Prove using the divergence theorem that $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ over a positively oriented closed surface S has the value zero if the surface does not contain the origin, and the value 4π if it does.
(\mathbf{F} is the vector field for the flow arising from a source of strength 4π at the origin.)
6C-10 A flow field \mathbf{F} is said to be incompressible if $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=0$ for all closed surfaces S. Assume that \mathbf{F} is continuously differentiable. Show that

$$
\mathbf{F} \text { is the field of an incompressible flow } \Longleftrightarrow \operatorname{div} \mathbf{F}=0 .
$$

6C-11 Show that the flux of the position vector $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ outward through a closed surface S is three times the volume contained in that surface.

6D. Line Integrals in Space

6D-1 Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for the following fields \mathbf{F} and curves C :
a) $\mathbf{F}=y \mathbf{i}+z \mathbf{j}-x \mathbf{k} ; \quad C$ is the twisted cubic curve $x=t, y=t^{2}, z=t^{3}$ running from $(0,0,0)$ to $(1,1,1)$.
b) \mathbf{F} is the field of $(\mathrm{a}) ; C$ is the line running from $(0,0,0)$ to $(1,1,1)$
c) \mathbf{F} is the field of (a); C is the path made up of the succession of line segments running from $(0,0,0)$ to $(1,0,0)$ to $(1,1,0)$ to $(1,1,1)$.
d) $\mathbf{F}=z x \mathbf{i}+z y \mathbf{j}+x \mathbf{k} ; \quad C$ is the helix $x=\cos t, y=\sin t, z=t$, running from $(1,0,0)$ to $(1,0,2 \pi)$.

6D-2 Let $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$; show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for any curve C lying on a sphere of radius a centered at the origin.

6D-3* a) Let C be the directed line segment running from P to Q, and let \mathbf{F} be a constant vector field. Show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\mathbf{F} \cdot P Q$.
b) Let C be a closed space polygon $P_{1} P_{2} \ldots P_{n} P_{1}$, and let \mathbf{F} be a constant vector field. Show that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$. (Use part (a).)
c) Let C be a closed space curve, \mathbf{F} a constant vector field. Show that $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$. (Use part (b).)

6D-4 a) Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$; calculate $\mathbf{F}=\nabla f$.
b) Let C be the helix of 6D-1d above, but running from $t=0$ to $t=2 n \pi$. Calculate the work done by \mathbf{F} moving a unit point mass along C; use three methods:
(i) directly
(ii) by using the path-independence of the integral to replace C by a simpler path
(iii) by using the first fundamental theorem for line integrals.

6D-5 Let $\mathbf{F}=\nabla f$, where $f(x, y, z)=\sin (x y z)$. What is the maximum value of $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ over all possible paths C ? Give a path C for which this maximum value is attained.

6D-6* Let $\mathbf{F}=\nabla f$, where $f(x, y, z)=\frac{1}{x+y+z+1}$. Find the work done by \mathbf{F} carrying a unit point mass from the origin out to ∞ along a ray.
(Take the ray to be $x=a t, y=b t, z=c t$.)

6E. Gradient Fields in Space

6E-1 Which of the following differentials are exact? For each one which is, express it in the form $d f$ for a suitable function $f(x, y, z)$, using one of the systematic methods.
a) $x^{2} d x+y^{2} d y+z^{2} d z$
b) $y^{2} z d x+2 x y z d y+x y^{2} d z$
c) $y\left(6 x^{2}+z\right) d x+x\left(2 x^{2}+z\right) d y+x y d z$

6E-2 Find $\operatorname{curl} \mathbf{F}$, if $\mathbf{F}=x^{2} y \mathbf{i}+y z \mathbf{j}+x y z^{2} \mathbf{k}$.
6E-3 The fields \mathbf{F} below are defined for all x, y, z. For each,
a) show that curl $\mathbf{F}=\mathbf{0}$;
b) find a potential function $f(x, y, z)$, using either method, or inspection.
(i) $x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$
(ii) $(2 x y+z) \mathbf{i}+x^{2} \mathbf{j}+x \mathbf{k}$
(iii) $y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}$

6E-4 Show that if $f(x, y, z)$ and $g(x, y, z)$ are two functions having the same gradient, then $f=g+c$ for some constant c. (Use the Fundamental Theorem for Line Integrals.)

6E-5 For what values of a and b will $\mathbf{F}=y z^{2} \mathbf{i}+\left(x z^{2}+a y z\right) \mathbf{j}+\left(b x y z+y^{2}\right) \mathbf{k}$ be a conservative field? Using these values, find the corresponding potential function $f(x, y, z)$ by one of the systematic methods.
$\mathbf{6 E - 6}$ a) Define what it means for $M d x+N d y+P d z$ to be an exact differential.
b) Find all values of a, b, c for which

$$
\left.\left(a x y z+y^{3} z^{2}\right) d x+(a / 2) x^{2} z+3 x y^{2} z^{2}+b y z^{3}\right) d y+\left(3 x^{2} y+c x y^{3} z+6 y^{2} z^{2}\right) d z
$$

will be exact.
c) For those values of a, b, c, express the differential as $d f$ for a suitable $f(x, y, z)$.

6F. Stokes' Theorem

6F-1 Verify Stokes' theorem when S is the upper hemisphere of the sphere of radius one centered at the origin and C is its boundary; i.e., calculate both integrals in the theorem and show they are equal. Do this for the vector fields
а) $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$;
b) $\mathbf{F}=y \mathbf{i}+z \mathbf{j}+x \mathbf{k}$.

6F-2 Verify Stokes' theorem if $\mathbf{F}=y \mathbf{i}+z \mathbf{j}+x \mathbf{k}$ and S is the portion of the plane $x+y+z=0$ cut out by the cylinder $x^{2}+y^{2}=1$, and C is its boundary (an ellipse).

6F-3 Verify Stokes' theorem when S is the rectangle with vertices at $(0,0,0),(1,1,0),(0,0,1)$, and $(1,1,1)$, and $\mathbf{F}=y z \mathbf{i}+x z \mathbf{j}+x y \mathbf{k}$.

6F-4* Let $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$, where M, N, P have continuous second partial derivatives.
a) Show by direct calculation that $\operatorname{div}(\operatorname{curl} F)=0$.
b) Using (a), show that $\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} d S=0$ for any closed surface S.

6F-5 Let S be the surface formed by the cylinder $x^{2}+y^{2}=a^{2}, 0 \leq z \leq h$, together with the circular disc forming its top, oriented so the normal vector points up or out. Let $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}+x^{2} \mathbf{k}$. Find the flux of $\nabla \times \mathbf{F}$ through S
(a) directly, by calculating two surface integrals;
(b) by using Stokes' theorem.

6G. Topological Questions

6G-1 Which regions are simply-connected?
a) first octant b) exterior of a torus c) region between two concentric spheres
d) three-space with one of the following removed:
i) a line
ii) a point
iii) a circle
iv) the letter H
v) the letter R
vi) a ray

6G-2 Show that the fields $\mathbf{F}=\rho^{n}(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})$, where $\rho=\sqrt{x^{2}+y^{2}+z^{2}}$, are gradient fields for any value of the integer n. (Use $\rho_{x}=x / \rho$, etc.)

Then, find the potential function $f(x, y, z)$. (It is easiest to phrase the question in terms of differentials: one wants $d f=\rho^{n}(x d x+y d y+z d z)$; for $n=0$, you can find f by inspection; from this you can guess the answer for $n \neq 0$ as well. The case $n=-2$ is an exception, and must be handled separately. The printed solutions use this method, somewhat more formally phrased using the fundamental theorem of line integrals.)

6G-3* If D is taken to be the exterior of the wire link shown, then the little closed curve C cannot be shrunk to a point without leaving D, i.e., without crossing the link. Nonetheless, show that C is the boundary of a two-sided surface lying entirely inside D. (So if \mathbf{F} is a field in D such that $\operatorname{curl} \mathbf{F}=\mathbf{0}$, the above considerations show that $\oint_{C} \mathbf{F} \cdot d \mathbf{r}=0$.)

6G-4* In cylindrical coordinates r, θ, z, let $\mathbf{F}=\nabla \varphi$, where $\varphi=\tan ^{-1} \frac{z}{r-1}$.
a) Interpret φ geometrically. What is the domain of \mathbf{F} ?
b) From the geometric interpretation what will be the value of $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ around a closed path C that links with the unit circle in the $x y$-plane (for example, take C to be the circle in the $y z$-plane with radius 1 and center at $(0,1,0)$?

6H. Applications to Physics

6H-1 Prove that $\nabla \cdot \nabla \times \mathbf{F}=0$. What are the appropriate hypotheses about the field \mathbf{F} ?
6H-2 Show that for any closed surface S, and continuously differentiable vector field \mathbf{F},

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=0
$$

Do it two ways: a) using the divergence theorem; b) using Stokes' theorem.
6H-3* Prove each of the following (ϕ is a (scalar) function):
a) $\nabla \cdot(\phi \mathbf{F})=\phi \nabla \cdot \mathbf{F}+\mathbf{F} \cdot \nabla \phi$
b) $\nabla \times(\phi \mathbf{F})=\phi \nabla \times \mathbf{F}+(\nabla \phi) \times \mathbf{F}$
c) $\nabla \cdot(\mathbf{F} \times \mathbf{G})=\mathbf{G} \cdot \nabla \times \mathbf{F}-\mathbf{F} \cdot \nabla \times \mathbf{G}$
$\mathbf{6 H}-\mathbf{4}^{*}$ The normal derivative. If S is an oriented surface with unit normal vector n, and ϕ is a function defined and differentiable on some domain containing S, then the normal derivative of ϕ on S is defined to be the directional derivative of ϕ in the direction \mathbf{n}. In symbols (on the left is the notation for the normal derivative):

$$
\frac{\partial \phi}{\partial n}=\nabla \phi \cdot \mathbf{n}
$$

Prove that if S is closed and D its interior, and if ϕ has continuous second derivatives inside D, then

$$
\iint_{S} \frac{\partial \phi}{\partial n} d S=\iiint_{D} \nabla^{2} \phi d V
$$

(This shows for example that if you are trying to find a harmonic function ϕ defined in D and having a prescribed normal derivative on S, you must be sure that $\frac{\partial \phi}{\partial n}$ has been prescribed so that $\iint_{S} \frac{\partial \phi}{\partial n} d S=0$.

6H-5* Formulate and prove the analogue of the preceding exercise for the plane.
6H-6* Prove that, if S is a closed surface with interior D, and ϕ has continuous second derivatives in D, then

$$
\iint_{S} \phi \frac{\partial \phi}{\partial n} d S=\iiint_{D} \phi\left(\nabla^{2} \phi\right)+(\nabla \phi)^{2} d V
$$

$\mathbf{6 H - 7}$ * Formulate and prove the analogue of the preceding exercise for a plane.

6H-8 A boundary value problem.* Suppose you want to find a function ϕ defined in a domain containing a closed surface S and its interior D, such that (i) ϕ is harmonic in D and (ii) $\phi=0$ on S.
a) Show that the two conditions imply that $\phi=0$ on all of D. (Use Exercise 6.)
b) Instead of assuming (ii), assume instead that the values of ϕ on S are prescribed as some continuous function on S. Prove that if a function ϕ exists which is harmonic in D and has these prescribed boundary values, then it is unique - there is only one such function. (In other words, the values of a harmonic function function on the boundary surface S determine its values everywhere inside S.) (Hint: Assume there are two such functions and consider their difference.)

6H-9 Vector potential* In the same way that $\mathbf{F}=\nabla \phi \Rightarrow \nabla \times \mathbf{F}=\mathbf{0}$ has the partial converse

$$
\nabla \times \mathbf{F}=0 \quad \text { in a simply-connected region } \quad \Rightarrow \quad \mathbf{F}=\nabla f
$$

so the theorem $\quad \mathbf{F}=\nabla \times \mathbf{G} \quad \Rightarrow \quad \nabla \cdot \mathbf{F}=0 \quad$ has the partial converse

$$
\begin{equation*}
\nabla \cdot \mathbf{F}=0 \quad \text { in a suitable region } \Rightarrow \mathbf{F}=\nabla \times \mathbf{G}, \text { for some } \mathbf{G} \tag{*}
\end{equation*}
$$

\mathbf{G} is called a vector potential for \mathbf{F}. A suitable region is one with this property: whenever P lies in the region, the whole line segment joining P to the origin lies in the region. (Instead of the origin, one could use some other fixed point.) For instance, a sphere, a cube, or all of 3 -space would be suitable regions.

Suppose for instance that $\nabla \cdot \mathbf{F}=0$ in all of 3 -space. Then \mathbf{G} exists in all of 3 -space, and is given by the formula

$$
\begin{equation*}
\mathbf{G}=\int_{0}^{1} t \mathbf{F}(t x, t y, t z) \times \mathbf{R} d t, \quad \mathbf{R}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k} \tag{**}
\end{equation*}
$$

The integral means: integrate separately each component of the vector function occurring in the integrand, and you'll get the corresponding component of G.

We shall not prove this formula here; the proof depends on Leibniz' rule for differentiating under an integral sign. We can however try out the formula.
a) Let $\mathbf{F}=y \mathbf{i}+z \mathbf{j}+x \mathbf{k}$. Check that $\operatorname{div} \mathbf{F}=0$, find \mathbf{G} from the formula $\left({ }^{* *}\right)$, and check your answer by verifying that $\mathbf{F}=\operatorname{curl} \mathbf{G}$.
b) Show that \mathbf{G} is unique up to the addition of an arbitrary gradient field; i.e., if \mathbf{G} is one such field, then all others are of the form

$$
\begin{equation*}
\mathbf{G}^{\prime}=\mathbf{G}+\nabla f \tag{***}
\end{equation*}
$$

for an arbitrary function $f(x, y, z)$. (Show that if \mathbf{G}^{\prime} has the form $\left({ }^{* * *}\right)$, then $\mathbf{F}=\operatorname{curl} \mathbf{G}^{\prime}$; then show conversely that if \mathbf{G}^{\prime} is a field such that $\operatorname{curl} \mathbf{G}^{\prime}=\mathbf{F}$, then \mathbf{G}^{\prime} has the form (***).)

6H-10 Let \mathbf{B} be a magnetic field produced by a moving electric field E. Assume there are no charges in the region. Then one of Maxwell's equations in differential form reads

$$
\nabla \times \mathbf{B}=\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}
$$

What is the integrated form of this law? Prove your answer, as in the notes; you can assume that the partial differentiation can be moved outside of the integral sign.
$\mathbf{6 H}-11^{*}$ In the preceding problem if we also allow for a field \mathbf{j} which gives the current density at each point of space, we get Ampere's law in differential form (as modified by Maxwell):

$$
\nabla \times \mathbf{B}=\frac{1}{c}\left(4 \pi \mathbf{j}+\frac{\partial \mathbf{E}}{\partial t}\right)
$$

Give the integrated form of this law, and deduce it from the differential form, as done in the notes.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

