## Problems: Limits in Spherical Coordinates

1. Find the limits needed to use spherical coordinates to compute the volume of a sphere of radius $a$.

Answer: Limits: inner $\rho$ : 0 to $a$-radial segments
middle $\phi: 0$ to $\pi$-fan of rays.
outer $\theta$ : 0 to $2 \pi$-volume.

To set up and evaluate the integral (optional):
$V=\iiint_{D} d V=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} \rho^{2} \sin \phi d \rho d \phi d \theta$
Inner: $\left.\frac{\rho^{3}}{3} \sin \phi\right|_{0} ^{a}=\frac{a^{3}}{3} \sin \phi$
Middle: $-\left.\frac{a^{3}}{3} \cos \phi\right|_{0} ^{\pi}=\frac{2}{3} a^{3}$
Outer: $\frac{4}{3} \pi a^{3}$-as it should be.

2. Find limits in spherical coordinates which describe the region bounded by the sphere $\rho=a$ and the cone $\phi=\alpha$.
Answer: Limits: $\rho: 0$ to $a, \quad \phi: 0$ to $\alpha, \quad \theta: 0$ to $2 \pi$.

3. Find limits for a solid spherical cap obtained by slicing a solid sphere of radius $a \sqrt{2}$ by a plane at a distance $a$ from the center.

Answer: See the picture.


Figure 1: Sphere of radius $a \sqrt{2}$ sliced by the plane $z=a$.
Inner $\rho: a / \cos \phi$ to $a \sqrt{2}$, middle $\phi: 0$ to $\pi / 4$, outer $\theta: 0$ to $2 \pi$.

MIT OpenCourseWare
http://ocw.mit.edu

### 18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

