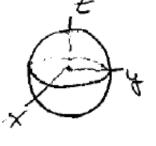
Problems: Limits in Spherical Coordinates


1. Find the limits needed to use spherical coordinates to compute the volume of a sphere of radius a.

<u>Answer:</u> Limits: inner ρ : 0 to a –radial segments middle ϕ : 0 to π –fan of rays.

outer θ : 0 to 2π –volume.

To set up and evaluate the integral (optional):

 $V = \iiint_D dV = \int_0^{2\pi} \int_0^{\pi} \int_0^a \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$ Inner: $\frac{\rho^3}{3} \sin \phi \Big|_0^a = \frac{a^3}{3} \sin \phi$ Middle: $-\frac{a^3}{3} \cos \phi \Big|_0^{\pi} = \frac{2}{3} a^3$ Outer: $\frac{4}{3} \pi a^3$ -as it should be.

1)

K 8=9

2. Find limits in spherical coordinates which describe the region bounded by the sphere $\rho = a$ and the cone $\phi = \alpha$. **Answer:** Limits: ρ : 0 to a, ϕ : 0 to α , θ : 0 to 2π .

3. Find limits for a solid spherical cap obtained by slicing a solid sphere of radius $a\sqrt{2}$ by a plane at a distance *a* from the center.

Answer: See the picture.

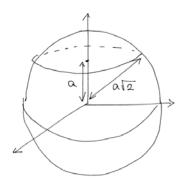


Figure 1: Sphere of radius $a\sqrt{2}$ sliced by the plane z = a.

Inner ρ : $a/\cos\phi$ to $a\sqrt{2}$, middle ϕ : 0 to $\pi/4$, outer θ : 0 to 2π .

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.