Limits in Spherical Coordinates

Definition of spherical coordinates

$\rho=$ distance to origin, $\quad \rho \geq 0$
$\phi=$ angle to z-axis, $0 \leq \phi \leq \pi$
$\theta=$ usual $\theta=$ angle of projection to $x y$-plane with x-axis, $0 \leq \theta \leq 2 \pi$
Easy trigonometry gives:

$$
\begin{aligned}
z & =\rho \cos \phi \\
x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta .
\end{aligned}
$$

The equations for x and y are most easily deduced by noticing that for r from polar coordinates we have

$$
r=\rho \sin \phi .
$$

This implies

$$
x=r \cos \theta=\rho \sin \phi \cos \theta, \text { and } y=r \sin \theta=\rho \sin \phi \sin \theta .
$$

Going the other way:
$\rho=\sqrt{z^{2}+y^{2}+z^{2}} \quad \phi=\cos ^{-1}(z / \rho) \quad \theta=\tan ^{-1}(y / x)$.
Example: $(x, y, z)=(1,0,0) \Rightarrow \rho=1, \phi=\pi / 2, \theta=0$
$(x, y, z)=(0,1,0) \Rightarrow \rho=1, \phi=\pi / 2, \theta=\pi / 2$
$(x, y, z)=(0,0,1) \Rightarrow \rho=1, \phi=0, \theta$-can be anything
The volume element in spherical coordinates

$$
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

The figure at right shows how we get this. The volume of the curved box is

$$
\Delta V \approx \Delta \rho \cdot \rho \Delta \phi \cdot \rho \sin \phi \Delta \theta=\rho^{2} \sin \phi \Delta \rho \Delta \phi \Delta \theta .
$$

Finding limits in spherical coordinates

We use the same procedure as for rectangular and cylindrical coordinates. To calculate the limits for an iterated integral $\iiint_{D} d \rho d \phi d \theta$ over a region D in 3 -space, we are integrating first with respect to ρ. Therefore we

1. Hold ϕ and θ fixed, and let ρ increase. This gives us a ray going out from the origin.
2. Integrate from the ρ-value where the ray enters D to the ρ-value where the ray leaves, D. This gives the limits on ρ.
3. Hold θ fixed and let ϕ increase. This gives a family of rays, that form a sort of fan. Integrate over those ϕ-values for which the rays intersect the region D.
4. Finally, supply limits on θ so as to include all of the fans which intersect the
 region D.

For example, suppose we start with the circle in the $y z$-plane of radius 1 and center at $(1,0)$, rotate it about the z-axis, and take D to be that part of the resulting solid lying in the first octant.

First of all, we have to determine the equation of the surface formed by the
 rotated circle. In the $y z$-plane, the two coordinates ρ and ϕ are indicated. To see the relation between them when P is on the circle, we see that also angle $O A P=\phi$, since both the angle ϕ and $O A P$ are complements of the same angle, $A O P$. From the right triangle, this shows the relation is $\rho=2 \sin \phi$.
As the circle is rotated around the z-axis, the relationship stays the same, so $\rho=2 \sin \phi$ is the equation of the whole surface.
To determine the limits of integration, when ϕ and θ are fixed, the corresponding ray enters the region where $\rho=0$ and leaves where $\rho=2 \sin \phi$.
As ϕ increases, with θ fixed, it is the rays between $\phi=0$ and $\phi=\pi / 2$ that intersect D, since we are only considering the portion of the surface lying in the first octant (and thus above the $x y$-plane).
Again, since we only want the part in the first octant, we only use θ values from 0 to $\pi / 2$. So the iterated integral is

$$
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{2 \sin \phi} d \rho d \phi d \theta
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

