Limits in Spherical Coordinates

Definition of spherical coordinates

 $\rho = \text{distance to origin}, \quad \rho \ge 0$ $\phi = \text{angle to } z\text{-axis}, \quad 0 \le \phi \le \pi$ $\theta = \text{usual } \theta = \text{angle of projection to } xy\text{-plane with } x\text{-axis}, \quad 0 \le \theta \le 2\pi$ Easy trigonometry gives:

 $z = \rho \cos \phi$

 $x = \rho \sin \phi \cos \theta$ $y = \rho \sin \phi \sin \theta.$

The equations for x and y are most easily deduced by noticing that for r from polar coordinates we have

$$r = \rho \sin \phi.$$

This implies

$$x = r \cos \theta = \rho \sin \phi \cos \theta$$
, and $y = r \sin \theta = \rho \sin \phi \sin \theta$

Going the other way:

 $\rho = \sqrt[n]{z^2 + y^2 + z^2}$ $\phi = \cos^{-1}(z/\rho)$ $\theta = \tan^{-1}(y/x).$

Example: $(x, y, z) = (1, 0, 0) \Rightarrow \rho = 1, \phi = \pi/2, \theta = 0$ $(x, y, z) = (0, 1, 0) \Rightarrow \rho = 1, \phi = \pi/2, \theta = \pi/2$ $(x, y, z) = (0, 0, 1) \Rightarrow \rho = 1, \phi = 0, \theta$ -can be anything

The volume element in spherical coordinates

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta.$$

The figure at right shows how we get this. The volume of the curved box is

$$\Delta V \approx \Delta \rho \cdot \rho \Delta \phi \cdot \rho \sin \phi \Delta \theta = \rho^2 \sin \phi \Delta \rho \Delta \phi \Delta \theta.$$

Finding limits in spherical coordinates

We use the same procedure as for rectangular and cylindrical coordinates. To calculate the limits for an iterated integral $\int \int \int_D d\rho \, d\phi \, d\theta$ over a region D in 3-space, we are integrating first with respect to ρ . Therefore we

1. Hold ϕ and θ fixed, and let ρ increase. This gives us a ray going out from the origin.

2. Integrate from the ρ -value where the ray enters D to the ρ -value where the ray leaves ρ . D. This gives the limits on ρ .

3. Hold θ fixed and let ϕ increase. This gives a family of rays, that form a sort of fan. Integrate over those ϕ -values for which the rays intersect the region D.

4. Finally, supply limits on θ so as to include all of the fans which intersect the region D.

For example, suppose we start with the circle in the yz-plane of radius 1 and center at (1,0), rotate it about the z-axis, and take D to be that part of the resulting solid lying in the first octant.

First of all, we have to determine the equation of the surface formed by the rotated circle. In the *yz*-plane, the two coordinates ρ and ϕ are indicated. To see the relation between them when *P* is on the circle, we see that also angle $OAP = \phi$, since both the angle ϕ and OAP are complements of the same angle, AOP. From the right triangle, this shows the relation is $\rho = 2 \sin \phi$.

As the circle is rotated around the z-axis, the relationship stays the same, so $\rho = 2 \sin \phi$ is the equation of the whole surface.

To determine the limits of integration, when ϕ and θ are fixed, the corresponding ray enters the region where $\rho = 0$ and leaves where $\rho = 2 \sin \phi$.

As ϕ increases, with θ fixed, it is the rays between $\phi = 0$ and $\phi = \pi/2$ that intersect D, since we are only considering the portion of the surface lying in the first octant (and thus above the *xy*-plane).

Again, since we only want the part in the first octant, we only use θ values from 0 to $\pi/2$. So the iterated integral is

$$\int_0^{\pi/2} \int_0^{\pi/2} \int_0^{2\sin\phi} d\rho \, d\phi \, d\theta.$$

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.