18.02 Problem Set 10, Part II Solutions

1. Base: $R: x^{2}+(y-1)^{2} \leq 1$. Top: $z=f(x, y)=\left(x^{2}+y^{2}\right)^{1 / 2}$.

In cylindrical coords, base is

$$
\begin{aligned}
& 0 \leq r \leq 2 \sin \theta \\
& 0 \leq \theta \leq \pi
\end{aligned}
$$

The top is $z=r$.
(a)

$$
\begin{aligned}
V & =\int_{0}^{\pi} \int_{0}^{2 \sin \theta} \int_{0}^{r} 1 d z r d r d \theta=\int_{0}^{\pi} \int_{0}^{2 \sin \theta} r \cdot r d r d \theta \\
& =\int_{0}^{\pi} r^{3} /\left.3\right|_{0} ^{2 \sin \theta} d \theta=\frac{8}{3} \int_{0}^{\pi} \sin ^{3} \theta d \theta \\
& =\frac{16}{3} \int_{0}^{\pi / 2} \sin ^{3} \theta d \theta
\end{aligned}
$$

with the last step by symmetry. Then use table $113, n=3$ to get

$$
=\frac{16}{3} \cdot \frac{2}{3}=\frac{32}{9} .
$$

(b)

$$
\begin{aligned}
\bar{z} & =\frac{1}{V} \iiint_{G} z d V=\frac{1}{V} \int_{0}^{\pi} \int_{0}^{2 \sin \theta} \int_{0}^{r} z d z r d r d \theta \\
& =\frac{1}{V} \int_{0}^{\pi} \int_{0}^{2 \sin \theta}\left[z^{2} / 2\right]_{0}^{r} r d r d \theta \\
& =\frac{1}{V} \int_{0}^{\pi} \int_{0}^{2 \sin \theta} r^{3} / 2 d r d \theta=\frac{2}{V} \int_{0}^{\pi} \sin ^{4} \theta d \theta \\
& =\frac{4}{V} \int_{0}^{\pi / 2} \sin ^{4} \theta d \theta=\frac{4}{V} \frac{1}{2} \frac{3}{4} \frac{\pi}{2}=\frac{3 \pi}{4 V} .
\end{aligned}
$$

Now $V=32 / 9$ so $\bar{z}=\frac{27 \pi}{128} \approx 0.6627$ and this is approximately a third of the maximum height $(=2)$ of G.
2. Looking at the original integral, we see that G is the region

$$
0 \leq z \leq \sqrt{4-x^{2}}, \quad 0 \leq y \leq 2 x, \quad 0 \leq x \leq 2
$$

(a)

(b) We may re-describe G as

$$
0 \leq y \leq 2 x, \quad 0 \leq x \leq \sqrt{4-z^{2}}, \quad 0 \leq z \leq 2
$$

This gives

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-z^{2}}} \int_{0}^{2 x} f(x, y, z) d y d x d z
$$

(c) We may redescribe G as

$$
y / 2 \leq x \leq \sqrt{4-z^{2}}, \quad 0 \leq z \leq \sqrt{4-(y / 2)^{2}}, \quad 0 \leq y \leq 4
$$

This gives

$$
\int_{0}^{4} \int_{0}^{\sqrt{4-(y / z)^{2}}} \int_{y / 2}^{\sqrt{4-z^{2}}} f(x, y, z) d x d z d y
$$

(d) $f=1$. Then the original integral is

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{2 x} \int_{0}^{\sqrt{4-x^{2}}} d z d y d x & =\int_{0}^{2} \int_{0}^{2 x}\left(4-x^{2}\right)^{1 / 2} d y d x=\int_{0}^{2} 2 x\left(4-x^{2}\right)^{1 / 2} d x \\
& =-\left.\frac{2}{3}\left(4-x^{2}\right)^{3 / 2}\right|_{0} ^{2}=16 / 3
\end{aligned}
$$

The integral from (b) is
$\int_{0}^{2} \int_{0}^{\sqrt{4-z^{2}}} \int_{0}^{2 x} d y d x d z=\int_{0}^{2} \int_{0}^{\sqrt{4-z^{2}}} 2 x d x d z$

$$
=\int_{0}^{2}\left[x^{2}\right]_{0}^{\left(4-z^{2}\right)^{1 / 2}} d z=\int_{0}^{2}\left(4-z^{2}\right) d z=\left[4 z-z^{3} / 3\right]_{0}^{2}=16 / 3 .
$$

The integral from (c) is
$\int_{0}^{4} \int_{0}^{\sqrt{4-(y / z)^{2}}} \int_{y / 2}^{\sqrt{4-z^{2}}} d x d z d y=\int_{0}^{4} \int_{0}^{\sqrt{4-(y / 2)^{2}}}\left(\sqrt{4-z^{2}}-y / 2\right) d z d y=$
$=\int_{0}^{4} \int_{0}^{\sqrt{4-(y / 2)^{2}}} \sqrt{4-z^{2}} d z d y-\int_{0}^{4} \int_{0}^{\sqrt{4-(y / 2)^{2}}} y / 2 d z d y$
Trig sub's and/or tables would be needed in order to get these to work out in exact form.
3. If V is the volume of the full vessel, we have that

$$
\text { Energy }=\iiint_{V} d E
$$

where

$$
d E=g z d m=10^{3} g z d V
$$

since the density of water is 10^{3}. Therefore we compute:
Energy $=\iiint_{V} 10^{3} g z d V=\int_{0}^{100} \int_{-9}^{9} \int_{\frac{1}{81} x^{4}}^{81} 10^{3} g z d z d x d y=\ldots=5.14 \cdot 10^{10}$ joules.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

