5. Triple Integrals

5A. Triple integrals in rectangular and cylindrical coordinates

5A-1 a)
$$\int_{0}^{2} \int_{-1}^{1} \int_{0}^{1} (x+y+z)dx \, dy \, dz \qquad \text{Inner: } \frac{1}{2}x^{2} + x(y+z) \Big]_{x=0}^{1} = \frac{1}{2} + y + z$$

Middle: $\frac{1}{2}y + \frac{1}{2}y^{2} + yz \Big]_{y=-1}^{1} = 1 + z - (-z) = 1 + 2z$ Outer: $z + z^{2} \Big]_{0}^{2} = 6$
b)
$$\int_{0}^{2} \int_{0}^{\sqrt{y}} \int_{0}^{xy} 2xy^{2}z \, dz \, dx \, dy \qquad \text{Inner: } xy^{2}z^{2} \Big]_{0}^{xy} = x^{3}y^{4}$$

Middle: $\frac{1}{4}x^{4}y^{4} \Big]_{0}^{\sqrt{y}} = \frac{1}{4}y^{6}$ Outer: $\frac{1}{28}y^{7} \Big]_{0}^{2} = \frac{32}{7}.$

5A-2

a) (i)
$$\int_0^1 \int_0^1 \int_0^{1-y} dz \, dy \, dx$$
 (ii) $\int_0^1 \int_0^{1-y} \int_0^1 dx \, dz \, dy$ (iii) $\int_0^1 \int_0^1 \int_0^{1-z} dy \, dx \, dz$

c) In cylindrical coordinates, with the polar coordinates r and θ in xz-plane, we get

$$\iiint_R dy \, dr \, d\theta = \int_0^{\pi/2} \int_0^1 \int_0^2 dy \, dr \, d\theta$$

d) The sphere has equation $x^2 + y^2 + z^2 = 2$, or $r^2 + z^2 = 2$ in cylindrical coordinates.

The cone has equation $z^2 = r^2$, or z = r. The circle in which they intersect has a radius r found by solving the two equations z = r and $z^2 + r^2 = 2$ simultaneously; eliminating z we get $r^2 = 1$, so r = 1. Putting it all together, we get

$$\int_0^{2\pi} \int_0^1 \int_r^{\sqrt{2-r^2}} r \, dz \, dr \, d\theta.$$

5A-3 By symmetry, $\bar{x} = \bar{y} = \bar{z}$, so it suffices to calculate just one of these, say \bar{z} . We have

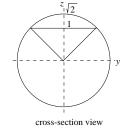
z-moment =
$$\iiint_D z \, dV = \int_0^1 \int_0^{1-x} \int_0^{1-x-y} z \, dz \, dy \, dx$$

Inner: $\frac{1}{2}z^2\Big]_0^{1-x-y} = \frac{1}{2}(1-x-y)^2$ Middle: $-\frac{1}{6}(1-x-y)^3\Big]_0^{1-x} = \frac{1}{6}(1-x)^3$ Outer: $-\frac{1}{24}(1-x)^4\Big]_0^1 = \frac{1}{24} = \bar{z}$ moment.

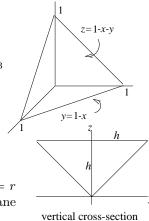
mass of D = volume of $D = \frac{1}{3}$ (base)(height) = $\frac{1}{3} \cdot \frac{1}{2} \cdot 1 = \frac{1}{6}$.

Therefore $\bar{z} = \frac{1}{24}/\frac{1}{6} = \frac{1}{4}$; this is also \bar{x} and \bar{y} , by symmetry.

5A-4 Placing the cone as shown, its equation in cylindrical coordinates is z = r and the density is given by $\delta = r$. By the geometry, its projection onto the *xy*-plane is the interior R of the origin-centered circle of radius h.



y+z=1



a) Mass of solid
$$D = \iiint_D \delta \, dV = \int_0^{2\pi} \int_0^h \int_r^h r \cdot r \, dz \, dr \, d\theta$$

Inner: $(h-r)r^2$; Middle: $\frac{hr^3}{3} - \frac{r^4}{4} \Big]_0^h = \frac{h^4}{12}$; Outer: $\frac{2\pi h^4}{12}$

b) By symmetry, the center of mass is on the z-axis, so we only have to compute its z-coordinate, \bar{z} .

$$z \text{-moment of } D = \iiint_D z \,\delta \, dV = \int_0^{2\pi} \int_0^h \int_r^h zr \cdot r \, dz \, dr \, d\theta$$

Inner: $\frac{1}{2} z^2 r^2 \Big]_r^h = \frac{1}{2} (h^2 r^2 - r^4)$ Middle: $\frac{1}{2} \left(h^2 \frac{r^2}{3} - \frac{r^5}{5} \right)_0^h = \frac{1}{2} h^5 \cdot \frac{2}{15}$
Outer: $\frac{2\pi h^5}{15}$. Therefore, $\bar{z} = \frac{\frac{2}{15}\pi h^5}{\frac{2}{12}\pi h^4} = \frac{4}{5}h$.

5A-5 Position S so that its base is in the xy-plane and its diagonal D lies along the x-axis (the y-axis would do equally well). The octants divide S into four tetrahedra, which by symmetry have the same moment of inertia about the x-axis; we calculate the one in the first octant. (The picture looks like that for 5A-3, except the height is 2.)

The top of the tetrahedron is a plane intersecting the x- and y-axes at 1, and the z-axis at 2. Its equation is therefore $x + y + \frac{1}{2}z = 1$.

The square of the distance of a point (x, y, z) to the axis of rotation (i.e., the x-axis) is given by $y^2 + z^2$. We therefore get:

moment of inertia =
$$4 \int_0^1 \int_0^{1-x} \int_0^{2(1-x-y)} (y^2 + z^2) dz dy dx.$$

5A-6 Placing *D* so its axis lies along the positive *z*-axis and its base is the origin-centered disc of radius *a* in the *xy*-plane, the equation of the hemisphere is $z = \sqrt{a^2 - x^2 - y^2}$, or $z = \sqrt{a^2 - r^2}$ in cylindrical coordinates. Doing the inner and outer integrals mentally:

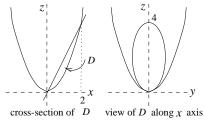
z-moment of inertia of
$$D = \iiint_D r^2 dV = \int_0^{2\pi} \int_0^a \int_0^{\sqrt{a^2 - r^2}} r^2 dz \, r \, dr \, d\theta = 2\pi \int_0^a r^3 \sqrt{a^2 - r^2} dr$$

The integral can be done using integration by parts (write the integrand $r^2 \cdot r\sqrt{a^2 - r^2}$), or by substitution; following the latter course, we substitute $r = a \sin u$, $dr = a \cos u \, du$, and get (using the formulas at the beginning of exercises 3B)

$$\int_0^a r^3 \sqrt{a^2 - r^2} dr = \int_0^{\pi/2} a^3 \sin^3 u \cdot a^2 \cos^2 u \, du$$
$$= a^5 \int_0^{\pi/2} (\sin^3 u - \sin^5 u) \, du = a^5 \left(\frac{2}{3} - \frac{2 \cdot 4}{1 \cdot 3 \cdot 5}\right) = \frac{2}{15} a^5. \qquad \text{Ans:} \ \frac{4\pi}{15} a^5$$

5A-7 The solid D is bounded below by $z = x^2 + y^2$ and above by z = 2x. The main problem is determining the projection R of D to the xy-plane, since we need to know this before we can put in the limits on the iterated integral.

The outline of R is the projection (i.e., vertical shadow) of the curve in which the paraboloid and plane intersect. This curve is made up of the points in which the graphs of z = 2x and $z = x^2 + y^2$ intersect, i.e., the simultaneous solutions of the two equations. To project the curve, we omit the z-coordinates of the points on it. Algebraically, this amounts to solving the equations simultaneously by eliminating z from the two equations; doing this, we get as the outline of R the curve



$$x^2 + y^2 = 2x$$
 or, completing the square, $(x-1)^2 + y^2 = 1$.

This is a circle of radius 1 and center at (1,0), whose polar equation is therefore $r = 2\cos\theta$.

We use symmetry to calculate just the right half of D and double the answer:

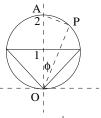
$$z \text{-moment of inertia of } D = 2 \int_0^{\pi/2} \int_0^{2\cos\theta} \int_{x^2+y^2}^{2x} r^2 \, dz \, r \, dr \, d\theta$$
$$= 2 \int_0^{\pi/2} \int_0^{2\cos\theta} \int_{r^2}^{2r\cos\theta} r^3 \, dz \, dr \, d\theta = 2 \int_0^{\pi/2} \int_0^{2\cos\theta} r^3 (2r\cos\theta - r^2) \, dr \, d\theta$$
Inner: $\frac{2}{5} r^5 \cos\theta - \frac{1}{6} r^6 \Big]_0^{2\cos\theta} = \frac{2}{5} \cdot 32 \cos^6\theta - \frac{1}{3} \cdot 32 \cos^6\theta$ Outer: $\cdot \frac{32}{15} \int_0^{\pi/2} \cos^6\theta \, d\theta = \cdot \frac{32}{15} \cdot \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{\pi}{2} = \frac{\pi}{3}$ Ans: $\frac{2\pi}{3}$

5B. Triple Integrals in spherical coordinates

5B-1 a) The angle between the central axis of the cone and any of the lines on the cone is $\pi/4$; the sphere is $\rho = \sqrt{2}$; so the limits are (no integrand given):: $\int_0^{2\pi} \int_0^{\pi/4} \int_0^{\sqrt{2}} d\rho \, d\phi \, d\theta$.

b) The limits are (no integrand is given):
$$\int_0^{\pi/2} \int_0^{\pi/2} \int_0^{\infty} d\rho \, d\phi \, d\theta$$

c) To get the equation of the sphere in spherical coordinates, we note that AOP is always a right triangle, for any position of P on the sphere. Since AO = 2 and $OP = \rho$, we get according to the definition of the cosine, $\cos \phi = \rho/2$, or $\rho = 2 \cos \phi$. (The picture shows the cross-section of the sphere by the plane containing P and the central axis AO.)



cross-section

The plane z = 1 has in spherical coordinates the equation $\rho \cos \phi = 1$, or $\rho = \sec \phi$. It intersects the sphere in a circle of radius 1; this shows that $\pi/4$ is the maximum value of ϕ for which the ray having angle ϕ intersects the region. Therefore the limits are (no integrand is given):

$$\int_0^{2\pi} \int_0^{\pi/4} \int_{\sec\phi}^{2\cos\phi} d\rho \, d\phi \, d\theta$$

TRIPLE INTEGRALS

5B-2 Place the solid hemisphere D so that its central axis lies along the positive z-axis and its base is in the xy-plane. By symmetry, $\bar{x} = 0$ and $\bar{y} = 0$, so we only need \bar{z} . The integral for it is the product of three separate one-variable integrals, since the integrand is the product of three one-variable functions and the limits of integration are all constants.

$$\bar{z}\text{-moment} = \iiint_D z \, dV = \int_0^{2\pi} \int_0^{\pi/2} \int_0^a (\rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$
$$= 2\pi \cdot \left(\frac{1}{4}\rho^4\right)_0^a \cdot \left(\frac{1}{2}\sin^2 \phi\right)_0^{\pi/2} = 2\pi \cdot \frac{1}{4}a^4 \cdot \frac{1}{2} = \frac{\pi a^4}{4}.$$
Since the mass is $\frac{2}{3}\pi a^3$, we have finally $\bar{z} = \frac{\pi a^4/4}{2\pi a^3/3} = \frac{3}{8}a.$

5B-3 Place the solid so the vertex is at the origin, and the central axis lies along the positive z-axis. In spherical coordinates, the density is given by $\delta = z = \rho \cos \phi$, and referring to the picture, we have

M. of I. =
$$\iiint_D r^2 \cdot z \, dV = \iiint_D (\rho \sin \phi)^2 (\rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

= $\int_0^{2\pi} \int_0^{\pi/6} \int_0^a \rho^5 \sin^3 \phi \cos \phi \, d\rho \, d\phi \, d\theta$ cross-section
= $2\pi \cdot \frac{a^6}{6} \cdot \frac{1}{4} \sin^4 \phi \Big]_0^{\pi/6} = 2\pi \cdot \frac{a^6}{6} \cdot \frac{1}{4} \left(\frac{1}{2}\right)^4 = \frac{\pi a^6}{2^6 \cdot 3}.$

5B-4 Place the sphere so its center is at the origin. In each case the iterated integral can be expressed as the product of three one-variable integrals (which are easily calculated), since the integrand is the product of one-variable functions and the limits are constants.

a)
$$\int_0^{2\pi} \int_0^{\pi} \int_0^a \rho \cdot \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = 2\pi \cdot 2 \cdot \frac{1}{4} a^4 = \pi a^4;$$
 average $= \frac{\pi a^4}{4\pi a^3/3} = \frac{3a}{4}$

b) Use the z-axis as diameter. The distance of a point from the z-axis is $r = \rho \sin \phi$.

$$\int_0^{2\pi} \int_0^{\pi} \int_0^a \rho \sin \phi \cdot \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta = 2\pi \cdot \frac{\pi}{2} \cdot \frac{1}{4} \, a^4 = \frac{\pi^2 a^4}{4}; \qquad \text{average} = \frac{\pi^2 a^4/4}{4\pi a^3/3} = \frac{3\pi a}{16}.$$

c) Use the xy-plane and the upper solid hemisphere. The distance is $z = \rho \cos \phi$.

$$\int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{a} \rho \cos \phi \cdot \rho^{2} \sin \phi \, d\rho \, d\phi \, d\theta = 2\pi \cdot \frac{1}{2} \cdot \frac{1}{4} \, a^{4} = \frac{\pi a^{4}}{4}; \qquad \text{average} = \frac{\pi a^{4}/4}{2\pi a^{3}/3} = \frac{3a}{8}.$$

E. 18.02 EXERCISES

5C. Gravitational Attraction

5C-2 The top of the cone is given by z = 2; in spherical coordinates: $\rho \cos \phi = 2$. Let α be the angle between the axis of the cone and any of its generators. The density $\delta = 1$. Since the cone is symmetric about its axis, the gravitational attraction has only a k-component, and is

$$G \int_{0}^{2\pi} \int_{0}^{\alpha} \int_{0}^{2/\cos\phi} \sin\phi \cos\phi \, d\rho \, d\phi \, d\theta.$$

Inner: $\frac{2}{\cos\phi} \sin\phi \cos\phi$ Middle: $-2\cos\phi \Big]_{0}^{\alpha} = -2\cos\alpha + 2$ Outer: $2\pi \cdot 2(1-\cos\alpha)$
Ans: $4\pi G \Big(1-\frac{2}{\sqrt{5}}\Big)$

5C-3 Place the sphere as shown so that Q is at the origin. Since it is rotationally symmetric about the z-axis, the force will be in the **k**-direction.

Equation of sphere: $\rho = 2\cos\phi$ Density: $\delta = \rho^{-1/2}$

$$F_{z} = G \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{2\cos\phi} \rho^{-1/2} \cos\phi \sin\phi \, d\rho \, d\phi \, d\theta$$

Inner: $\cos\phi \sin\phi \, 2\rho^{1/2} \Big]_{0}^{2\cos\phi} = 2\sqrt{2} \, \cos^{3/2}\phi \, \sin\phi$
Middle: $2\sqrt{2} \Big[-\frac{2}{5} \cos^{5/2}\phi \Big]_{0}^{\pi/2} = \frac{4\sqrt{2}}{5}$ Outer: $2\pi G \frac{4\sqrt{2}}{5} = \frac{8\sqrt{2}}{5} \pi G.$

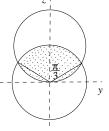
5C-4 Referring to the figure, the total gravitational attraction (which is in the \mathbf{k} direction, by rotational symmetry) is the sum of the two integrals

$$G \int_{0}^{2\pi} \int_{0}^{\pi/3} \int_{0}^{1} \cos\phi \,\sin\phi \,d\rho \,d\phi \,d\theta \quad + \quad G \int_{0}^{2\pi} \int_{\pi/3}^{\pi/2} \int_{0}^{2\cos\phi} \cos\phi \,\sin\phi \,d\rho \,d\phi \,d\theta$$
$$= 2\pi \,G \cdot \frac{1}{2} \left(\frac{\sqrt{3}}{2}\right)^{2} \,+\, 2\pi \,G \cdot \frac{2}{3} \left(\frac{1}{2}\right)^{3} \,=\, \frac{3}{4}\pi \,G + \frac{1}{6}\pi \,G = \frac{11}{12}\pi \,G.$$

The two spheres are shown in cross-section. The spheres intersect at the points where $\phi = \pi/3$.

The first integral respresents the gravitational attraction of the top part of the solid, bounded below by the cone $\phi = \pi/3$ and above by the sphere $\rho = 1$.

The second integral represents the bottom part of the solid, bounded below by the sphere $\rho = 2 \cos \phi$ and above by the cone.



18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.