Problems: Two Dimensional Curl

Imagine a flat arrangement of particles covering the plane. Suppose all the particles are moving in counterclockwise circles about the origin with constant angular speed ω.
Let $\mathbf{F}(x, y)$ be the velocity field described by the velocity of the particles at point (x, y). Find \mathbf{F} and show $\operatorname{curl}(\mathbf{F})=2 \omega$.

Answer: Because the particles have a constant angular speed ω and no radial velocity, the motion of the particles can be parametrized by $r=r_{0}, \theta=\theta_{0}+\omega t$. In polar coordinates we have $(x(t), y(t))=\left(r_{0} \cos \left(\theta_{0}+\omega t\right), r_{0} \sin \left(\theta_{0}+\omega t\right)\right)$.
Taking derivatives with respect to t we find

$$
\begin{aligned}
\mathbf{F} & =-\omega r_{0} \sin \left(\theta_{0}+\omega t\right) \mathbf{i}+\omega r_{0} \cos \left(\theta_{0}+\omega t\right) \mathbf{j}=\langle-\omega y, \omega x\rangle, \\
\operatorname{curl} \mathbf{F} & =N_{x}-M_{y} \\
& =\omega-(-\omega) \\
& =2 \omega .
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

