Problems: Two Dimensional Curl

Imagine a flat arrangement of particles covering the plane. Suppose all the particles are moving in counterclockwise circles about the origin with constant angular speed ω .

Let $\mathbf{F}(x, y)$ be the velocity field described by the velocity of the particles at point (x, y). Find \mathbf{F} and show $\operatorname{curl}(\mathbf{F}) = 2\omega$.

<u>Answer</u>: Because the particles have a constant angular speed ω and no radial velocity, the motion of the particles can be parametrized by $r = r_0$, $\theta = \theta_0 + \omega t$. In polar coordinates we have $(x(t), y(t)) = (r_0 \cos(\theta_0 + \omega t), r_0 \sin(\theta_0 + \omega t))$.

Taking derivatives with respect to t we find

$$\mathbf{F} = -\omega r_0 \sin(\theta_0 + \omega t) \mathbf{i} + \omega r_0 \cos(\theta_0 + \omega t) \mathbf{j} = \langle -\omega y, \omega x \rangle,$$

$$\operatorname{curl} \mathbf{F} = N_x - M_y$$

$$= \omega - (-\omega)$$

$$= 2\omega.$$

MIT OpenCourseWare http://ocw.mit.edu

18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.