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18.02 Problem Set 7, Part II Solutions 

1.(a) 

(b) 

V = 
� 4 � 4−x √

4 − xdy dx �0
4 � 0 �y=4−x 

= y
√
4 − x 

y=0 
dx


0
� 4 2 ��4 
2 64 

= (4 − x)3/2dx = −
5
(4 − x)5/2� = 

5
45/2 =

5 
. 

0 0 

2. (a) For simplicity let us assume we are integrating the volume of revo
lution out to some radius a. We also assume that f(r) ≥ 0 for 0 ≤ r ≤ a. 
Then if R is the disc x2 + y2 ≤ a, we want 

V = fdA. 
R 

In polar coordinates this is � 2π � a 

V = f(r)rdrdθ. 
0 0 

We may write the integral in the other order as well, because the limits to 
each integral are constants. � a �� 2π � 

V = f(r)dθ rdr. 
0 0 
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Evaluating the inner integral gives 

a 

2πrf(r)dr 
0 

which is the shell method formula. 

(b) 

3. (a) For a circular sector Sθ with center angle 2θ and radius a, 

1 
A(Sθ) = a 2(2θ) = a 2θ 

2 

and its centroid is at (x̄S (θ), 0) where � θ � a1 
x̄S (θ) = x̄(Sθ) = (r cos ϕ) r dr dϕ. 

a2θ −θ 0 

This comes out to � � 
2 sin θ 

x̄S(θ) = a. 
3θ 

So we observe a factor fs(θ) = 2 sin θ governing at what multiple of the radius 
3θ 

the centroid must occur. 
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(b) The result from elementary geometry is that the centroid of a triangular 
region with uniform density is located at the intersection of the three side-
bisectors or ‘medians’, and that this point divides the medians in a ratio of 2 
to 1, with the shorter segment nearest the bisection point. Thus we get that 
for the triangle given and positioned in the same way as the circular sector 
on the x-axis � � 

2 
x̄Δ = 

3 
a. 

So fΔ = the factor which multiplies a is equal to 2
3 , independent of θ. 

(c) The circular sector region is a subset of the triangular region, with the 
excess part of the triangle farther away from the origin. Thus we should have 
x̄S (θ) < x̄Δ. But in fact the math agrees, since sin 

θ
θ < 1, and so the fs(θ), 

the factor of a for the sector, which we found in part(a) to be fs(θ) = 2 sin θ 
3θ 

thus satisfies the inequality fs(θ) < 2
3 = fΔ. 

4. Case A: (X(x, y, t), Y (x, y, t)) = ((1 + t)x, (1 + t)y). 

∂(X, Y ) 1 + t 0 
J(x, y, t) = = 

∂(x, y) 0 1 + t 

and so (a) | J(x, y, t) | = (1 + t)2 and (b) A (Rt) = (1 + t)2 A (R) 

Case B: (X(x, y, t), Y (x, y, t)) = (x cos t − y sin t, x sin t + y cos t), 

J(x, y, t) = 
cos t − sin t 
sin t cos t 

and so (a) | J(x, y, t) | = 1 and � 
(b) A (Rt) = A � 

(R) for all t. 

1Case C: (X(x, y, t), Y (x, y, t)) = (1 + t)x, (
1+t )y , 

1 + t 0 
J(x, y, t) = 10 

1+t 

and so (a) | J(x, y, t) | = 1 and (b) A (Rt) = A (R) for all t. 

5. Case A: (X(x, y, t), Y (x, y, t)) = ((1 + t)x, (1 + t)y).


v(x, y, t) = �∂X , ∂Y = �x, y�. The flow lines are straight lines fanning out

∂t ∂t �

from the origin. The velocity vectors depend only on the position, and their 
magnitude increases with the distance from the origin; thus the flow gets 
faster as it moves away from O. 
R2, the points downstream at t = 2 from the triangular region R, form a 
triangular region with vertices at (0, 0), (3, 3) and (3, −3). Thus A (R2) = 
1 3 6 = 9 = (1+2)2 A (R) as predicted in problem 5, since A (R) = 1 1 2
2 · 2 ·· · 
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= 1. The flow is not v-i. 

Case B: (X(x, y, t), Y (x, y, t)) = (x cos t − y sin t, x sin t + y cos t). 

v(x, y, t) = �−x sin t − y cos t, x cos t − y sin t�. The flow lines are circular 
paths centered at the origin. The velocity vectors depend on position and 
time; however the speed | v(x, y, t) | = x2 + y2 does not depend explicitly 
on time; its magnitude increases with the distance from the origin, but the 
angular velocity ω = |v

r
| = 1 is constant. So the flow is a ‘pure rotating’ 

circular flow moving counter-clockwise around the origin at 1 rad./unit time. 
Rπ , the points downstream at t = π from the triangular region R, form a 

2 2 
triangular region with vertices at (0, 0), (0, 2) and (−1, 2), i.e. the triangular 
region R rotated by π counter-clockwise. Thus A Rπ = A (R) = 1, as

2 2 

predicted in problem 4, since in general the flow is v-i. 

Case C: (X(x, y, t), Y (x, y, t)) = (1 + t)x, ( 1 )y .
1+t 

−yv(x, y, t) = �x, 
(1+t)2 �. The flow lines are the hyberbolas XY = xy = con

stant, with the x and y-axes as asymptotes. The velocity vectors depend on 
position and time. (The j-component of the velocity goes to zero as t > 0 
increases, which is consistent with the fact that the x-axis is a horizontal 
asymptote.) The flow comes ‘screaming in’ at high speed from (0, ∞) for 
t > −1, and then slows down as t increases. 
R3, the points downstream at t = 3 from the rectangular region R, form 
a rectangular region with vertices at (4, 1

4 ), (4, 1), (8, 
1
4 ), and (8, 1). Thus 

A (R3) = A (R) = 3, as predicted in problem 5, since in general the flow is 
v-i. However, it is not as easy to see why this is the case as it was in case 
B, where the flow just rotates a region into a congruent region. 
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