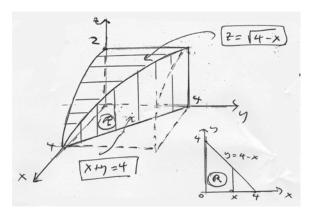
1.(a)



(b)

$$V = \int_{0}^{4} \int_{0}^{4-x} \sqrt{4-x} dy dx$$

=
$$\int_{0}^{4} \left[y\sqrt{4-x} \right]_{y=0}^{y=4-x} dx$$

=
$$\int_{0}^{4} (4-x)^{3/2} dx = -\frac{2}{5} (4-x)^{5/2} \Big|_{0}^{4} = \frac{2}{5} 4^{5/2} = \frac{64}{5}.$$

2. (a) For simplicity let us assume we are integrating the volume of revolution out to some radius a. We also assume that $f(r) \ge 0$ for $0 \le r \le a$. Then if R is the disc $x^2 + y^2 \le a$, we want

$$V = \int \int_R f dA.$$

In polar coordinates this is

$$V = \int_0^{2\pi} \int_0^a f(r) r dr d\theta.$$

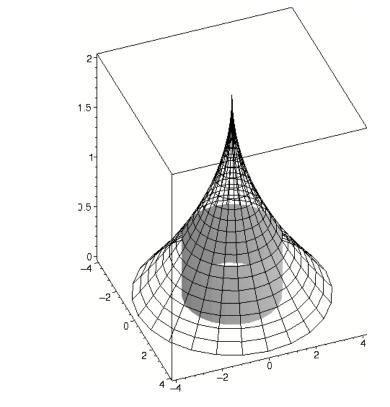
We may write the integral in the other order as well, because the limits to each integral are constants.

$$V = \int_0^a \left(\int_0^{2\pi} f(r) d\theta \right) r dr.$$

Evaluating the inner integral gives

$$\int_0^a 2\pi r f(r) dr$$

which is the shell method formula.



3. (a) For a circular sector S_{θ} with center angle 2θ and radius a,

$$A(S_{\theta}) = \frac{1}{2}a^2(2\theta) = a^2\theta$$

and its centroid is at $(\bar{x}_S(\theta), 0)$ where

$$\bar{x}_S(\theta) = \bar{x}(S_\theta) = \frac{1}{a^2\theta} \int_{-\theta}^{\theta} \int_0^a (r\cos\varphi) r \ dr \ d\varphi.$$

This comes out to

(b)

$$\bar{x}_S(\theta) = \left(\frac{2\sin\theta}{3\theta}\right)a.$$

So we observe a factor $f_s(\theta) = \frac{2\sin\theta}{3\theta}$ governing at what multiple of the radius the centroid must occur.

(b) The result from elementary geometry is that the centroid of a triangular region with uniform density is located at the intersection of the three sidebisectors or 'medians', and that this point divides the medians in a ratio of 2 to 1, with the shorter segment nearest the bisection point. Thus we get that for the triangle given and positioned in the same way as the circular sector on the x-axis

$$\bar{x}_{\Delta} = \left(\frac{2}{3}\right)a.$$

So f_{Δ} = the factor which multiplies *a* is equal to $\frac{2}{3}$, independent of θ . (c) The circular sector region is a subset of the triangular region, with the excess part of the triangle farther away from the origin. Thus we should have $\bar{x}_{S}(\theta) < \bar{x}_{\Delta}$. But in fact the math agrees, since $\frac{\sin \theta}{\theta} < 1$, and so the $f_{s}(\theta)$, the factor of *a* for the sector, which we found in part(a) to be $f_{s}(\theta) = \frac{2\sin \theta}{3\theta}$ thus satisfies the inequality $f_{s}(\theta) < \frac{2}{3} = f_{\Delta}$.

4. Case A:
$$(X(x, y, t), Y(x, y, t)) = ((1 + t)x, (1 + t)y)$$
.
 $J(x, y, t) = \frac{\partial(X, Y)}{\partial(x, y)} = \begin{bmatrix} 1 + t & 0 \\ 0 & 1 + t \end{bmatrix}$
and so (a) $|J(x, y, t)| = (1 + t)^2$ and (b) $A(\mathcal{R}_t) = (1 + t)^2 A(\mathcal{R})$
Case B: $(X(x, y, t), Y(x, y, t)) = (x \cos t - y \sin t, x \sin t + y \cos t)$,
 $J(x, y, t) = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$
and so (a) $|J(x, y, t)| = 1$ and (b) $A(\mathcal{R}_t) = A(\mathcal{R})$ for all t .
Case C: $(X(x, y, t), Y(x, y, t)) = ((1 + t)x, (\frac{1}{1 + t})y)$,
 $J(x, y, t) = \begin{bmatrix} 1 + t & 0 \\ 0 & \frac{1}{1 + t} \end{bmatrix}$
and so (a) $|J(x, y, t)| = 1$ and (b) $A(\mathcal{R}_t) = A(\mathcal{R})$ for all t .
5. Case A: $(X(x, y, t), Y(x, y, t)) = ((1 + t)x, (1 + t)y)$.

 $\mathbf{v}(x, y, t) = \langle \frac{\partial X}{\partial t}, \frac{\partial Y}{\partial t} \rangle = \langle x, y \rangle$. The flow lines are straight lines fanning out from the origin. The velocity vectors depend only on the position, and their magnitude increases with the distance from the origin; thus the flow gets faster as it moves away from O.

 \mathcal{R}_2 , the points downstream at t = 2 from the triangular region \mathcal{R} , form a triangular region with vertices at (0,0), (3,3) and (3,-3). Thus $A(\mathcal{R}_2) = \frac{1}{2} \cdot 3 \cdot 6 = 9 = (1+2)^2 A(\mathcal{R})$ as predicted in problem 5, since $A(\mathcal{R}) = \frac{1}{2} \cdot 1 \cdot 2$

= 1. The flow is **not v-i**.

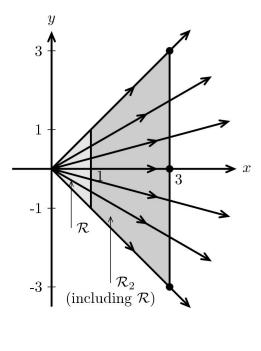
Case B: $(X(x, y, t), Y(x, y, t)) = (x \cos t - y \sin t, x \sin t + y \cos t).$

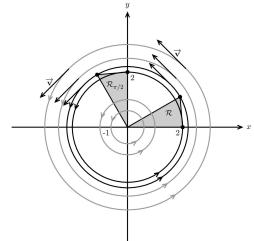
 $\mathbf{v}(x, y, t) = \langle -x \sin t - y \cos t, x \cos t - y \sin t \rangle$. The flow lines are circular paths centered at the origin. The velocity vectors depend on position and time; however the speed $|\mathbf{v}(x, y, t)| = \sqrt{x^2 + y^2}$ does not depend explicitly on time; its magnitude increases with the distance from the origin, but the angular velocity $\omega = \frac{|\mathbf{v}|}{r} = 1$ is constant. So the flow is a 'pure rotating' circular flow moving counter-clockwise around the origin at 1 rad./unit time. $\mathcal{R}_{\frac{\pi}{2}}$, the points downstream at $t = \frac{\pi}{2}$ from the triangular region \mathcal{R} , form a triangular region with vertices at (0,0), (0,2) and (-1,2), i.e. the triangular region \mathcal{R} rotated by $\frac{\pi}{2}$ counter-clockwise. Thus $A\left(\mathcal{R}_{\frac{\pi}{2}}\right) = A\left(\mathcal{R}\right) = 1$, as predicted in problem 4, since in general the flow **is v-i**.

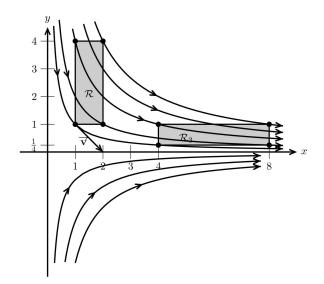
Case C: $(X(x, y, t), Y(x, y, t)) = ((1+t)x, (\frac{1}{1+t})y).$

 $\mathbf{v}(x, y, t) = \langle x, \frac{-y}{(1+t)^2} \rangle$. The flow lines are the hyberbolas XY = xy = constant, with the x and y-axes as asymptotes. The velocity vectors depend on position and time. (The **j**-component of the velocity goes to zero as t > 0 increases, which is consistent with the fact that the x-axis is a horizontal asymptote.) The flow comes 'screaming in' at high speed from $(0, \infty)$ for t > -1, and then slows down as t increases.

 \mathcal{R}_3 , the points downstream at t = 3 from the rectangular region \mathcal{R} , form a rectangular region with vertices at $(4, \frac{1}{4})$, (4, 1), $(8, \frac{1}{4})$, and (8, 1). Thus $A(\mathcal{R}_3) = A(\mathcal{R}) = 3$, as predicted in problem 5, since in general the flow **is v-i**. However, it is not as easy to see why this is the case as it was in case B, where the flow just rotates a region into a congruent region.







18.02SC Multivariable Calculus Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.