18.02 Problem Set 7, Part II Solutions

1.(a)

(b)

$$
\begin{aligned}
V & =\int_{0}^{4} \int_{0}^{4-x} \sqrt{4-x} d y d x \\
& =\int_{0}^{4}[y \sqrt{4-x}]_{y=0}^{y=4-x} d x \\
& =\int_{0}^{4}(4-x)^{3 / 2} d x=-\left.\frac{2}{5}(4-x)^{5 / 2}\right|_{0} ^{4}=\frac{2}{5} 4^{5 / 2}=\frac{64}{5} .
\end{aligned}
$$

2. (a) For simplicity let us assume we are integrating the volume of revolution out to some radius a. We also assume that $f(r) \geq 0$ for $0 \leq r \leq a$. Then if R is the disc $x^{2}+y^{2} \leq a$, we want

$$
V=\iint_{R} f d A .
$$

In polar coordinates this is

$$
V=\int_{0}^{2 \pi} \int_{0}^{a} f(r) r d r d \theta
$$

We may write the integral in the other order as well, because the limits to each integral are constants.

$$
V=\int_{0}^{a}\left(\int_{0}^{2 \pi} f(r) d \theta\right) r d r .
$$

Evaluating the inner integral gives

$$
\int_{0}^{a} 2 \pi r f(r) d r
$$

which is the shell method formula.
(b)

3. (a) For a circular sector S_{θ} with center angle 2θ and radius a,

$$
A\left(S_{\theta}\right)=\frac{1}{2} a^{2}(2 \theta)=a^{2} \theta
$$

and its centroid is at $\left(\bar{x}_{S}(\theta), 0\right)$ where

$$
\bar{x}_{S}(\theta)=\bar{x}\left(S_{\theta}\right)=\frac{1}{a^{2} \theta} \int_{-\theta}^{\theta} \int_{0}^{a}(r \cos \varphi) r d r d \varphi .
$$

This comes out to

$$
\bar{x}_{S}(\theta)=\left(\frac{2 \sin \theta}{3 \theta}\right) a .
$$

So we observe a factor $f_{s}(\theta)=\frac{2 \sin \theta}{3 \theta}$ governing at what multiple of the radius the centroid must occur.
(b) The result from elementary geometry is that the centroid of a triangular region with uniform density is located at the intersection of the three sidebisectors or 'medians', and that this point divides the medians in a ratio of 2 to 1 , with the shorter segment nearest the bisection point. Thus we get that for the triangle given and positioned in the same way as the circular sector on the x -axis

$$
\bar{x}_{\Delta}=\left(\frac{2}{3}\right) a .
$$

So $f_{\Delta}=$ the factor which multiplies a is equal to $\frac{2}{3}$, independent of θ.
(c) The circular sector region is a subset of the triangular region, with the excess part of the triangle farther away from the origin. Thus we should have $\bar{x}_{S}(\theta)<\bar{x}_{\Delta}$. But in fact the math agrees, since $\frac{\sin \theta}{\theta}<1$, and so the $f_{s}(\theta)$, the factor of a for the sector, which we found in part(a) to be $f_{s}(\theta)=\frac{2 \sin \theta}{3 \theta}$ thus satisfies the inequality $f_{s}(\theta)<\frac{2}{3}=f_{\Delta}$.
4. Case A: $(X(x, y, t), Y(x, y, t))=((1+t) x,(1+t) y)$.
$J(x, y, t)=\frac{\partial(X, Y)}{\partial(x, y)}=\left[\begin{array}{cc}1+t & 0 \\ 0 & 1+t\end{array}\right]$
and so (a) $|J(x, y, t)|=(1+t)^{2}$ and (b) $A\left(\mathcal{R}_{t}\right)=(1+t)^{2} A(\mathcal{R})$
Case B: $(X(x, y, t), Y(x, y, t))=(x \cos t-y \sin t, x \sin t+y \cos t)$,
$J(x, y, t)=\left[\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right]$
and so (a) $|J(x, y, t)|=1$ and (b) $A\left(\mathcal{R}_{t}\right)=A(\mathcal{R})$ for all t.
Case C: $(X(x, y, t), Y(x, y, t))=\left((1+t) x,\left(\frac{1}{1+t}\right) y\right)$,
$J(x, y, t)=\left[\begin{array}{cc}1+t & 0 \\ 0 & \frac{1}{1+t}\end{array}\right]$
and so (a) $|J(x, y, t)|=1$ and (b) $A\left(\mathcal{R}_{t}\right)=A(\mathcal{R})$ for all t.
5. Case A: $(X(x, y, t), Y(x, y, t))=((1+t) x,(1+t) y)$.
$\mathbf{v}(x, y, t)=\left\langle\frac{\partial X}{\partial t}, \frac{\partial Y}{\partial t}\right\rangle=\langle x, y\rangle$. The flow lines are straight lines fanning out from the origin. The velocity vectors depend only on the position, and their magnitude increases with the distance from the origin; thus the flow gets faster as it moves away from O.
\mathcal{R}_{2}, the points downstream at $t=2$ from the triangular region \mathcal{R}, form a triangular region with vertices at $(0,0),(3,3)$ and $(3,-3)$. Thus $A\left(\mathcal{R}_{2}\right)=$ $\frac{1}{2} \cdot 3 \cdot 6=9=(1+2)^{2} A(\mathcal{R})$ as predicted in problem 5, since $A(\mathcal{R})=\frac{1}{2} \cdot 1 \cdot 2$
$=1$. The flow is not v-i.
Case B: $(X(x, y, t), Y(x, y, t))=(x \cos t-y \sin t, x \sin t+y \cos t)$.
$\mathbf{v}(x, y, t)=\langle-x \sin t-y \cos t, x \cos t-y \sin t\rangle$. The flow lines are circular paths centered at the origin. The velocity vectors depend on position and time; however the speed $|\mathbf{v}(x, y, t)|=\sqrt{x^{2}+y^{2}}$ does not depend explicitly on time; its magnitude increases with the distance from the origin, but the angular velocity $\omega=\frac{|\mathbf{v}|}{r}=1$ is constant. So the flow is a 'pure rotating' circular flow moving counter-clockwise around the origin at 1 rad./unit time. $\mathcal{R}_{\frac{\pi}{2}}$, the points downstream at $t=\frac{\pi}{2}$ from the triangular region \mathcal{R}, form a triangular region with vertices at $(0,0),(0,2)$ and $(-1,2)$, i.e. the triangular region \mathcal{R} rotated by $\frac{\pi}{2}$ counter-clockwise. Thus $A\left(\mathcal{R}_{\frac{\pi}{2}}\right)=A(\mathcal{R})=1$, as predicted in problem 4, since in general the flow is $\mathbf{v} \mathbf{- i}$.

Case C: $(X(x, y, t), Y(x, y, t))=\left((1+t) x,\left(\frac{1}{1+t}\right) y\right)$.
$\mathbf{v}(x, y, t)=\left\langle x, \frac{-y}{(1+t)^{2}}\right\rangle$. The flow lines are the hyberbolas $X Y=x y=$ constant, with the x and y -axes as asymptotes. The velocity vectors depend on position and time. (The \mathbf{j}-component of the velocity goes to zero as $t>0$ increases, which is consistent with the fact that the x -axis is a horizontal asymptote.) The flow comes 'screaming in' at high speed from $(0, \infty)$ for $t>-1$, and then slows down as t increases.
\mathcal{R}_{3}, the points downstream at $t=3$ from the rectangular region \mathcal{R}, form a rectangular region with vertices at $\left(4, \frac{1}{4}\right),(4,1),\left(8, \frac{1}{4}\right)$, and $(8,1)$. Thus $A\left(\mathcal{R}_{3}\right)=A(\mathcal{R})=3$, as predicted in problem 5 , since in general the flow is $\mathbf{v - i}$. However, it is not as easy to see why this is the case as it was in case B, where the flow just rotates a region into a congruent region.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

