Chain rule with constraints

1. Let $P=(1,2,3)$ and assume $f(x, y, z)$ is a differentiable function with $\boldsymbol{\nabla} f=\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}$ at P. Also assume that x, y and z satisfy the relation $x^{3}-y^{2}+z=0$.

Take x and y to be the independent variables and let $g(x, y)=f(x, y, z(x, y))$. Find ∇g at the point (1,2).

Answer: Since f and g are the same, we have $d f=d g$. The reason for using two symbols is that f is formally a function of x, y and z and g is formally a function of just x and y. The gradient gives us the derivatives of f, so at P we have

$$
d f=d x-2 d y+3 d z
$$

The constraint gives us

$$
3 x^{2} d x-2 y d y+d z=0 \Rightarrow d z=-3 x^{2} d x+2 y d y
$$

At the point $(1,2)$ this gives $d z=-3 d x+4 d y$. Substituting this in the equation for $d f$ at P gives

$$
d f=d x-2 d y+3(-3 d x+4 d y)=-8 d x+10 d y
$$

Having written $d f$ in terms of $d x$ and $d y$ we have found $d g$ at $(1,2)$. Thus $\frac{\partial g}{\partial x}=-8$ and $\frac{\partial g}{\partial y}=10 \Rightarrow \nabla g=\langle-8,10\rangle$ at the point $(1,2)$.

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

