Problems: The Chain Rule with Constraints

Suppose $w=u^{3}-u v^{2}, u=x y$ and $v=u+x$.

1. Find $\left(\frac{\partial w}{\partial u}\right)_{x}$ and $\left(\frac{\partial w}{\partial x}\right)_{u}$ using the chain rule.

Answer: In finding $\left(\frac{\partial w}{\partial u}\right)_{x}$ we assume v and y are functions of u and that x is a constant.

$$
\begin{aligned}
\left(\frac{\partial w}{\partial u}\right)_{x} & =\left(3 u^{2}-v^{2}\right)-u \cdot 2 v\left(\frac{\partial v}{\partial u}\right)_{x} \\
& =3 u^{2}-v^{2}-2 u v
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left(\frac{\partial w}{\partial x}\right)_{u} & =0-u \cdot 2 v\left(\frac{\partial v}{\partial x}\right)_{u} \\
& =-2 u v .
\end{aligned}
$$

2. Find $\left(\frac{\partial w}{\partial u}\right)_{x}$ and $\left(\frac{\partial w}{\partial x}\right)_{u}$ using differentials.

Answer: We can compute:

$$
d w=\left(3 u^{2}-v^{2}\right) d u-2 u v d v ; \quad d u=x d y+y d x ; \quad d v=d u+d x
$$

We're interested in the independent variables u and x so we substitute $d v=d u+d x$ to get:

$$
d w=\left(3 u^{2}-v^{2}\right) d u-2 u v(d u+d x)=\left(3 u^{2}-v^{2}-2 u v\right) d u-2 u v d x .
$$

Using the fact that $d w=\left(\frac{\partial w}{\partial u}\right)_{x} d u+\left(\frac{\partial w}{\partial x}\right)_{u} d x$, we get the expected answer.
Note that we did not need the variable y or the equation $u=x y$ in these calculations!

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

