Lagrange multipliers

1. In an open-top wooden drawer, the two sides and back cost $\$ 2 /$ sq. ft., the bottom $\$ 1 / \mathrm{sq}$. ft. and the front $\$ 4 / \mathrm{sq}$. ft. Using Lagrange multipliers find the dimensions of the drawer with the largest capacity that can be made for $\$ 72$.

Answer: The box shown has dimensions x, y, and z.

The area of each side $=y z$; the area of the front (and back) $=x z$; the area of the bottom $=x y$. Thus, the cost of the wood is

$$
C(x, y, z)=2(2 y z+x z)+x y+4 x z=4 y z+6 x z+x y=72
$$

This is our constraint. We are trying to maximize the volume

$$
V=x y z
$$

The Lagrange multiplier equations are then

$$
\begin{aligned}
& \nabla V=\lambda \nabla C, \text { and } C=72 \\
\Leftrightarrow \quad & \langle y z, x z, x y\rangle=\lambda\langle 6 z+y, 4 z+x, 4 y+6 x\rangle, \quad 4 y z+6 x z+x y=72
\end{aligned}
$$

We solve for the critical points by isolating $1 / \lambda$.

$$
\frac{1}{\lambda}=\frac{6}{y}+\frac{1}{z}=\frac{4}{x}+\frac{1}{z}=\frac{4}{x}+\frac{6}{y}
$$

Comparing the third and fourth terms gives $\frac{1}{z}=\frac{6}{y} \Rightarrow y=6 z$.
Likewise the second and fourth terms give $x=4 z$.
Substituting this in the constraint gives $72 z^{2}=72 \Rightarrow z=1$. Thus,

$$
z=1, x=4, y=6
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.02SC Multivariable Calculus

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

