Solutions for PSet 1

1. $(1.10: 22)$
(a) Let $S=\left\{x_{1}, \ldots, x_{k}\right\} \subset V$. As $L(S)=\operatorname{span}(S)$, we can write:

$$
L(S)=\left\{y: y \in V \text { where } y=\sum_{i=1}^{k} c_{i} x_{i}\right\} c_{i} \text { is scalar }
$$

For $c_{j}=1, c_{i}=0, i \neq j$, we have $y=\sum_{i} c_{i} x_{i}=x_{j} \in L(S)$. Thus $x_{j} \in S$ implies that $x_{j} \in L(S)$ and $S \subseteq L(S)$.
(b) As T is a subspace of linear space V, T is a non-empty subset of V and T satisfies all closure axioms. Since $S \subseteq T$, we know (using the notation above) that $\left\{x_{1}, \ldots, x_{k}\right\} \subseteq T$. Now let $y \in L(S)$. Then by definition there exist $c_{i} \in \mathbb{R}$, for $i=1, \ldots, k$, such that $y=\sum_{i} c_{i} x_{i}$. By the closure axioms, $\sum_{i} c_{i} x_{i} \in T$ and thus $L(S) \subseteq T$.
(c) Since $L(S)$ is a subspace of V, one direction is obvious.

Now, suppose by contradiction that S is a subspace of V but $S \neq L(S)$. Since $S \subset L(S)$, this implies there exists $y \in L(S)-S$. As $y \in L(S)$, there exist $c_{i} \in \mathbb{R}, i=1, \ldots, k$, such that $y=\sum_{i} c_{i} x_{i}$. As S is a subset and thus closed under addition and scalar multiplication, $y \in S$. This implies a contradiction and proves the result.
(d) Assume $S=\left\{x_{1}, \ldots, x_{k}\right\}, T=\left\{x_{1}, \ldots, x_{n}\right\}$ where $n \geq k$. Let $y \in L(S)$. Then $y=\sum_{i=1}^{k} c_{i} x_{i}$ for some $c_{i} \in \mathbb{R}$. For $c_{j}=0$ for all $j=k+1, \ldots, n$, $y=\sum_{i=1}^{k} c_{i} x_{i}+\sum_{j=k+1}^{n} c_{j} x_{j}$. Thus, $y \in L(T)$.
(e) As S and T are subspaces of V, they are both closed under addition and scalar multiplication. Let $x, y \in S \cap T$ and $c \in \mathbb{R}$. As $c x+y \in S$ and $c x+y \in T$ we see $c x+y \in S \cap T$. Thus $S \cap T$ is closed under addition and multiplication. Therefore $S \cap T$ is a subspace of V.
(f) Assume $S=\left\{x_{1}, \ldots, x_{k}\right\}, T=\left\{y_{1}, \ldots, y_{n}\right\}$. Let $z \in L(S \cap T)$. Then there exist $c_{j} \in \mathbb{R}$ and $z_{j} \in S \cap T$ such that $z=\sum_{j} c_{j} z_{j}$. Since $z_{j} \in S \cap T$, $\sum_{j} c_{j} z_{j} \in L(S), L(T)$. Thus, $z \in L(S) \cap L(T)$.
(g) Let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}, T=\left\{\mathbf{v}_{3}, \mathbf{v}_{4}\right\}$ where $\mathbf{v}_{i} \in \mathbb{R}^{3}$ are each vectors such that $\mathbf{v}_{3}, \mathbf{v}_{4} \notin L(S)$ and $\mathbf{v}_{1}, \mathbf{v}_{2} \notin L(T)$. We can further choose these vectors such that $L(S)$ and $L(T)$ are both planes in \mathbb{R}^{3} by making sure each pair of vectors is linearly independent. By construction, $S \cap T=\emptyset$ but $L(S) \cap L(T)$ is a line in \mathbb{R}^{3}. So $L(S) \cap L(T) \neq L(S \cap T)$.
2. (1.13:11) In the linear space of all real polynomials, define $(f, g)=\int_{0}^{\infty} e^{-t} f(t) g(t) d t$.
(a) Let f, g be polynomials. Then $f g=\sum_{i=0}^{n} a_{i} x^{i}$ for some $n \in \mathbb{N}, a_{i} \in \mathbb{R}$. By definition,

$$
(f, g)=\int_{0}^{\infty} \sum_{i=0}^{n} e^{-t} a_{i} t^{i} d t
$$

Using integration by parts, we see that for any fixed $n \in \mathbb{N}$,

$$
\int_{0}^{\infty} t^{n} e^{-t} d t=-\left.t^{n} e^{-t}\right|_{0} ^{\infty}+\int_{0}^{\infty} n t^{n-1} e^{-t} d t=\int_{0}^{\infty} n t^{n-1} e^{-t} d t
$$

Iteratively integrating by parts n times, we see

$$
\int_{0}^{\infty} t^{n} e^{-t} d t=n!\int_{0}^{\infty} e^{-t} d t=n!
$$

(To be truly thorough, one should prove this by induction but we leave that to you!)
Thus, for $f g=\sum_{i=0}^{n} a_{i} x^{i}$,

$$
(f, g)=\sum_{i=0}^{n} i!a_{i}<\infty
$$

(b)

$$
\begin{aligned}
\left(x_{n}, x_{m}\right) & =\int_{0}^{\infty} e^{-t} t^{n} t^{m} d t=\int_{0}^{\infty} e^{-t} t^{m+n} d t \\
& =(m+n) \int_{0}^{\infty} e^{-t} t^{m+n-1} d t \\
& =(m+n)(m+n-1) \int_{0}^{\infty} e^{-t} t^{m+n-2} d t \text { (by iteratively integrating by parts) } \\
& =(m+n)(m+n-1) \cdots 1\left[\int_{0}^{\infty} e^{-t} d t\right] \\
& =(m+n)(m+n-1) \cdot 1 \cdot 1=(m+n)!
\end{aligned}
$$

(c) If $g(t)$ orthogonal to $f(t)$, then:

$$
\begin{aligned}
(f, g) & =\int_{0}^{\infty} e^{-t}(a+b t)(1+t) d t \\
& =\int_{0}^{\infty} a e^{-t} d t+(a+b) \int_{0}^{\infty} t e^{-t} d t+b \int_{0}^{\infty} t^{2} e^{-t} d t=0 \\
& \Longrightarrow a+a+b+2 b=2 a+3 b=0
\end{aligned}
$$

This means that $2 a=-3 b$ or polynomials $g(t)=a\left(1-\frac{2}{3} t\right)$ satisfy the requirement of orthogonality to $f(t)=1+t$.
3. (2.4:29) Let V denote the linear space of all real functions continuous on the interval $[-\pi, \pi]$. Let S be that subset of V consisting of all f satisfying:

$$
\int_{-\pi}^{\pi} f(t) d t=\int_{-\pi}^{\pi} f(t) \cos t d t=\int_{-\pi}^{\pi} f(t) \sin t d t
$$

(a) By definition, $S \subseteq V$. As integration is a linear operation, it can be shown that for $f_{1}, f_{2} \in S$ and $a \in \mathbb{R}$,

$$
\int_{-\pi}^{\pi} f_{1}(t)+f_{2}(t) d t=\int_{-\pi}^{\pi}\left(f_{1}(t)+f_{2}(t)\right) \cos t d t=\int_{-\pi}^{\pi}\left(f_{1}(t)+f_{2}(t)\right) \sin t d t
$$

and

$$
\int_{-\pi}^{\pi} a f(t) d t=\int_{-\pi}^{\pi} a f(t) \cos t d t=\int_{-\pi}^{\pi} a f(t) \sin t d t
$$

Thus, S is closed under addition and scalar multiplication.
(b) S contains the functions $f(x)$ defined above if those functions are real and are a part of V. Thus we have to show that $f(x)=\cos (n x)$ and $f(x)=\sin (n x)$ satisfy the integral equations defining V. Start with $f(x)=\cos (n x):$

$$
\begin{aligned}
\int_{-\pi}^{\pi} \cos (n t) d t= & \frac{1}{n}[\sin (\pi)-\sin (-\pi)]=0 \\
\int_{-\pi}^{\pi} \cos (n t) \cos (t) d t= & 0.5 \int_{-\pi}^{\pi}[\cos (n t+t)+\cos (n t-t)] d t=0 \\
\int_{-\pi}^{\pi} \cos (n t) \sin (t) d t= & 0.5 \int_{-\pi}^{\pi}[\sin (n t+t)-\sin (n t-t)] d t \\
= & 0.5 \cos (-(n+1) \pi)-0.5 \cos ((n+1) \pi) \\
& +0.5 \cos ((n-1) \pi)-0.5 \cos (-(n-1) \pi)=0
\end{aligned}
$$

(for both even and odd n)

A similar derivation makes the case for $f(x)=\sin (n x)$.
(c) S is infinite dimensional if its basis has an infinite number of independent elements. We can prove it is infinite dimensional by proving it is not finite dimensional. As $f_{n}(x)=\cos (n x), f_{n}(x)$ is orthogonal to $f_{m}(x)$ for all $n>2 \neq m>2$. Therefore there is no finite basis set of independent elements that can span S.
(d) Using trigonometric identities, observe that for $g(x) \in T(V)$ one has

$$
g(x)=\int_{-\pi}^{\pi} f(t) d t+\cos (x) \int_{-\pi}^{\pi} \cos (t) f(t) d t+\sin (x) \int_{-\pi}^{\pi} \sin (t) f(t) d t
$$

Thus, $T(V)$ is three dimensional with basis $\{1, \cos (x), \sin (x)\}$. (Note that since $f \in V$, the three integrals are all elements of \mathbb{R}.)
(e) Based on the identity shown in the previous part of the problem, $g=$ $T(f)=0$ if and only if the three integrals are all zero. Thus, $N(T)$ is precisely equal to the subspace S.
(f) Using the hint, observe that $f(x)=c_{1}+c_{2} \cos x+c_{3} \sin x$ for some $c_{1}, c_{2}, c_{3} \in \mathbb{R}$. Now evaluating the three integrals that describe $T(f)$ we observe

$$
T(f)=c f(x)=2 \pi c_{1}+\pi c_{2} \cos x+\pi c_{3} \sin x
$$

Thus, if $c_{1}=0$ then $f(x)=c_{2} \cos x+c_{3} \sin x$ and $c=\pi$ (here c_{2}, c_{3} are arbitrary real numbers). If $c_{1} \neq 0$, then $c_{2}=c_{3}=0, f(x)$ is a constant function and $c=2 \pi$.
(g) Let

$$
f_{j}(x)= \begin{cases}1 & \text { if } x \in[-1 / j, 1 / j] \\ 0 & \text { otherwise }\end{cases}
$$

Then $f_{j} \rightarrow 0$ strongly in L^{2} as

$$
\int_{\mathbb{R}}\left|f_{j}-0\right|^{2} d x=4 / j^{2} \rightarrow 0
$$

Observe, however, that $f_{j} \rightarrow f_{\infty}$ pointwise, where

$$
f_{\infty}(x)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

Notice here that f_{j} actually also converges strongly to f_{∞} in L^{2}, so though we've found a solution it might not be fully satisfying. A harder question to solve would be the following: Find a sequence of functions f_{j} such that NO subsequence of f_{j} converges pointwise to a function but f_{j} still converges strongly in L^{2} to a function.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

