Solutions for PSet 8

1. (10.5:11) Parameterize the sides of the square C by maps $s_{i}:[0,1] \rightarrow \mathbb{R}^{2}$ by

$$
\begin{aligned}
& s_{1}(t)=(1-t, t) \\
& s_{2}(t)=(-t, 1-t) \\
& s_{3}(t)=(t-1,-t) \\
& s_{4}(t)=(t, t-1)
\end{aligned}
$$

With this parametrization:

$$
\int_{C} \frac{\mathrm{~d} x+\mathrm{d} y}{|x|+|y|}=\int_{0}^{1} \frac{-1+1}{(1-t)+t} \mathrm{~d} t+\int_{0}^{1} \frac{-1-1}{t+(1-t)} \mathrm{d} t+\int_{0}^{1} \frac{1-1}{(1-t)+t} \mathrm{~d} t+\int_{0}^{1} \frac{1+1}{t+(1-t)} \mathrm{d} t
$$

The first and the third summands are 0 , and the second and fourth terms cancel each other, giving:

$$
\int_{C} \frac{\mathrm{~d} x+\mathrm{d} y}{|x|+|y|}=0
$$

2. (10.9:6) Writing the equation of the cylinder in complete square form:

$$
\left(x-\frac{a}{2}\right)^{2}+y^{2}=\frac{a^{2}}{4}
$$

Thus looking from high above the $x y$-plane the picture looks like:

The parametrization of the cylinders' intersection with the $x y$-plane is:

$$
\widetilde{s}(t)=\left(\frac{a}{2} \cos t+\frac{a}{2}, \frac{a}{2} \sin t, 0\right)
$$

We need to lift it up to sit on the sphere:

$$
s(t)=\left(\frac{a}{2} \cos t+\frac{a}{2}, \frac{a}{2} \sin t, z(t)\right),
$$

where $z(t) \geq 0$ and

$$
\left(\frac{a}{2} \cos t+\frac{a}{2}\right)^{2}+\left(\frac{a}{2} \sin t\right)^{2}+z(t)^{2}=a\left(\frac{a}{2} \cos t+\frac{a}{2}\right)+z(t)^{2}=a^{2}
$$

This means, that

$$
z(t)=\frac{a}{\sqrt{2}} \sqrt{1-\cos t}
$$

Now

$$
\begin{aligned}
\int_{C} & \left(y^{2}, z^{2}, x^{2}\right) \cdot \mathrm{d}(x, y, z) \\
& \left.=\int_{0}^{2 \pi} \frac{a^{3}}{8}\left(\sin ^{2} t, 2(1-\cos t),(\cos t+1)^{2}\right)\right) \cdot\left(-\sin t, \cos t, \frac{\sin t}{\sqrt{2(1-\cos t)}}\right) \mathrm{d} t \\
& =\frac{a^{3}}{8} \int_{0}^{2 \pi}\left(-\sin ^{3} t+2 \cos t(1-\cos t)+\frac{\sin t(\cos t+1)^{2}}{\sqrt{2(1-\cos t)}}\right) \mathrm{d} t \\
& =-\frac{a^{3}}{8} \int_{0}^{2 \pi} \sin ^{3} t \mathrm{~d} t++\frac{a^{3}}{4} \int_{0}^{2 \pi} \cos t(1-\cos t) \mathrm{d} t+\frac{a^{3}}{8} \int_{0}^{2 \pi} \frac{\sin t(\cos t+1)^{2}}{\sqrt{2(1-\cos t)}} \mathrm{d} t
\end{aligned}
$$

Computing each of the integrals separately we get:

$$
=0+\frac{a^{3}}{4} \pi+0=\frac{a^{3} \pi}{4}
$$

3. (C34:3) As per the question, $f(x, y)=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)$. Therefore we can write

$$
\phi(x, y)=\int_{C} \frac{1}{x^{2}+y^{2}}(-y, x) \cdot \mathrm{d}(x, y)
$$

As suggested in the exercise we will compute the integral along a specific path starting at $(1,0)$. For given (x, y) we can parameterize the path in two parts with $s_{1}:[1, x] \rightarrow \mathbb{R}^{2}$ and $s_{2}:[0, y] \rightarrow \mathbb{R}^{2}$. (Here an interval $[\mathrm{a}, \mathrm{b}]$ is understood as [b,a] if $a>b$.)

$$
\begin{aligned}
& s_{1}(t)=(t, 0) \\
& s_{2}(t)=(x, t)
\end{aligned}
$$

With these notations:

$$
\begin{aligned}
\phi(x, y) & =\int_{C} \frac{1}{x^{2}+y^{2}}(-y, x) \cdot \mathrm{d}(x, y) \\
& =\int_{1}^{x}-\frac{0}{t^{2}} \mathrm{dt}+\int_{0}^{y} \frac{x}{x^{2}+t^{2}} \mathrm{~d} t=\arctan \frac{y}{x}
\end{aligned}
$$

Finally, we can check that this is indeed the potential function for $f(x, y)$:

$$
\nabla \phi(x, y)=\frac{1}{x^{2}+y^{2}}(-y, x)=f(x, y)
$$

4. (10.18:13) Note, that the function is not necessarily well defined in $(0,0)$. Thus we will fix our basepoint at $(1,0)$. Then given a point $r(\cos \vartheta, \sin \vartheta) \in \mathbb{R}^{2}$, then an obvious path from $(1,0)$ to $r(\cos \vartheta, \sin \vartheta)$ can be parametrized by $s_{1}:[0, \vartheta] \rightarrow \mathbb{R}^{2}$ and $s_{2}:[1, r] \rightarrow \mathbb{R}^{2}$ with

$$
\begin{aligned}
& s_{1}(t)=(\cos t, \sin t) \\
& s_{2}(t)=t(\cos \vartheta, \sin \vartheta)
\end{aligned}
$$

For $n \neq-1$

$$
\begin{gathered}
\phi(r(\cos \vartheta, \sin \vartheta))=\int_{0}^{\vartheta} a 1^{n}(\cos t, \sin t) \cdot(-\sin t, \cos t) d t+\int_{1}^{r} a t^{n}(\cos \vartheta, \sin \vartheta) \cdot(\cos \vartheta, \sin \vartheta) d t \\
=0+a \int_{1}^{r} t^{n} d t=\frac{a r^{n+1}}{n+1}-\frac{a}{n+1}
\end{gathered}
$$

Checking that it is a potential function:

$$
\nabla \frac{a r^{n+1}}{n+1}=a r^{n}(\cos \vartheta, \sin \vartheta)
$$

For $n=-1$ we have

$$
\psi(r(\cos \vartheta, \sin \vartheta))=\int_{1}^{r} \frac{a}{t}(\cos \vartheta, \sin \vartheta) \cdot(\cos \vartheta, \sin \vartheta) \mathrm{d} t=a \int_{1}^{r} \frac{1}{t} d t=a \log r
$$

Again checking that this is indeed a potential function:

$$
\nabla \psi(r(\cos \vartheta, \sin \vartheta))=\frac{a}{r}(\cos \vartheta, \sin \vartheta)
$$

5. (10.18:17,18) In this exercise

$$
f(x, y)=\left(-\frac{y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right)
$$

10.18:17 We have computed on the recitation that

$$
D_{1} f_{2}(x, y)=D_{2} f_{1}(x, y)=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

10.18:18 (Compare the results with 3)
(a) We will consider the 3 cases one by one. First, for $x=0$ we have, by definition, $\theta=\pi / 2$. Now when $x \neq 0$

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{r \sin \theta}{r \cos \theta}=\frac{y}{x} .
$$

and

$$
\arctan \frac{y}{x}=\arctan \frac{-y}{-x}=\phi \in(-\pi / 2, \pi / 2) .
$$

For $x>0,-\pi / 2<\theta=\phi<\pi / 2$ and this corresponds directly with the definition of the arctan function.
For $x<0$, it turns out that $\theta=\phi+\pi$ because the angle between (x, y) and $(-x,-y)$ is precisely π.
(b) Using the derivation rule for the inverse function. If $x>0$

$$
\begin{aligned}
\frac{\partial \theta}{\partial x}(x, y) & =\frac{\partial}{\partial x} \arctan \frac{y}{x} \\
& =-\frac{y}{x^{2}} \frac{1}{1+\left(\frac{y}{x}\right)^{2}}=-\frac{y}{x^{2}+y^{2}} \\
\frac{\partial \theta}{\partial y}(x, y) & =\frac{\partial}{\partial y} \arctan \frac{y}{x} \\
& =\frac{1}{x} \frac{1}{1+\left(\frac{y}{x}\right)^{2}}=\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

Similar argument works for $x<0$ case. For $x=0$ one computes the left and right derivatives, and see that they are both equal to:

$$
\frac{\partial \theta}{\partial x}(0, y)=-\frac{1}{y}
$$

and

$$
\frac{\partial \theta}{\partial y}(0, y)=0
$$

Hence for all (x, y), the relations in the exercise for $\frac{\partial \theta}{\partial x}$ and $\frac{\partial \theta}{\partial y}$ hold. This proves that θ is a potential function for f on the set T.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

