Solutions for PSet 7

1. (9.8:7) Hint: It might help to define a scalar field $F(x, y, z)=f(u(x, y, z), v(x, y, z))$ where u, v are as needed. We first assume that $x \neq 0$. Given $g(x, y)=z$, we know

$$
\frac{\partial g}{\partial x}=-\frac{\partial F / \partial x}{\partial F / \partial z} ; \quad \frac{\partial g}{\partial y}=-\frac{\partial F / \partial y}{\partial F / \partial z}
$$

Now, we need only use the chain rule to determine the result. First observe that $\nabla u=\left(-y / x^{2}, 1 / x, 0\right), \nabla v=\left(-z / x^{2}, 0,1 / x\right)$. Now we compute

$$
\begin{aligned}
\frac{\partial F}{\partial x}=\nabla f(u, v) \cdot & (\partial u / \partial x, \partial v / \partial x)=D_{1} f(u, v)\left(-y / x^{2}\right)+D_{2} f(u, v)\left(-z / x^{2}\right) \\
\frac{\partial F}{\partial y} & =\nabla f(u, v) \cdot(\partial u / \partial y, \partial v / \partial y)=D_{1} f(u, v)(1 / x) \\
\frac{\partial F}{\partial z} & =\nabla f(u, v) \cdot(\partial u / \partial z, \partial v / \partial z)=D_{2} f(u, v)(1 / x)
\end{aligned}
$$

An easy computation then gives

$$
\frac{\partial g}{\partial x}=\frac{y D_{1} f(u, v)}{x D_{2} f(u, v)}+\frac{z}{x} ; \quad \frac{\partial g}{\partial y}=\frac{-D_{1} f(u, v)}{D_{2} f(u, v)} .
$$

Thus

$$
x \frac{\partial g}{\partial x}+y \frac{\partial g}{\partial y}=z=g(x, y)
$$

2. (a) First, $D F$ has the form of a block matrix.

$$
D F(\mathbf{x}, \mathbf{y})=\left(\begin{array}{c|c}
I_{n} & 0 \tag{1}\\
\hline D \mathbf{f}^{x}(\mathbf{x}, \mathbf{y}) & D \mathbf{f}^{y}(\mathbf{x}, \mathbf{y})
\end{array}\right)
$$

This comes when we consider

$$
F(\mathbf{x}, \mathbf{y})=\left(F_{1}(\mathbf{x}, \mathbf{y}), \ldots, F_{n}(\mathbf{x}, \mathbf{y}), f_{1}(\mathbf{x}, \mathbf{y}), \ldots, f_{m}(\mathbf{x}, \mathbf{y})\right)
$$

where here $F_{i}(\mathbf{x}, \mathbf{y})=\mathbf{x} \cdot \mathbf{e}_{i}$. Then $\frac{\partial F_{i}}{\partial x_{j}}=\delta_{i j}$ for $1 \leq i, j \leq n$ and $\frac{\partial F_{i}}{\partial y_{k}}=0$ for $1 \leq i \leq n, 1 \leq k \leq m$. The bottom portion of the matrix is exactly what we get based on our determination of $D \mathbf{f}^{x}, D \mathbf{f}^{y}$.
(b)

$$
D F(\mathbf{a}, \mathbf{b})=\left(\begin{array}{c|c}
I_{n} & 0 \tag{2}\\
\hline D \mathbf{f}^{x}(\mathbf{a}, \mathbf{b}) & D \mathbf{f}^{y}(\mathbf{a}, \mathbf{b})
\end{array}\right)
$$

The invertibility of $D f^{y}$ gives that $D F$ is invertible at (\mathbf{a}, \mathbf{b}). That is, recall that an invertible matrix has a row reduction that reduces it to the identity matrix. Using this particular row reduction, reduce the bottom m rows of $D F$. The new matrix $\tilde{D F}(\mathbf{a}, \mathbf{b})$ is lower triangular (everything above the main diagonal is zero). Recall in this case that $\operatorname{det}(\tilde{D F}(\mathbf{a}, \mathbf{b}))=$ 1 and since row reduction operations preserves the non-zero property of the determinant, $\operatorname{det}(\operatorname{DF}(\mathbf{a}, \mathbf{b}))=\operatorname{det}(\tilde{D F}(\mathbf{a}, \mathbf{b})) \neq 0$.
(c) Let $m: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+m}$ such that $m(\mathbf{x})=(\mathbf{x}, \mathbf{0})$. It's obvious that m is a continuous function and $m^{-1}(W)=U$. This, along with the fact that W is open (by definition), implies U is open.
(d) Now if $\mathbf{x} \in U$ then there exists $\mathbf{y} \in \mathbb{R}^{m}$ such that $\mathbf{f}(\mathbf{x}, \mathbf{y})=0$. Suppose there was a second \mathbf{y}^{\prime} such that $\mathbf{f}\left(\mathbf{x}, \mathbf{y}^{\prime}\right)=0$. But then $F(\mathbf{x}, \mathbf{y})=F\left(\mathbf{x}, \mathbf{y}^{\prime}\right)$ and since F is one-to-one we know that $\mathbf{y}=\mathbf{y}^{\prime}$.
We define $\mathbf{g}: U \rightarrow \mathbb{R}^{m}$ by this uniqueness, and by definition $\mathbf{f}(\mathbf{x}, \mathbf{g}(\mathbf{x}))=$ 0 . Now for $\mathbf{x} \in U, F(\mathbf{x}, \mathbf{g}(\mathbf{x}))=(\mathbf{x}, \mathbf{0})$. Let G again be the inverse of F. Then $G(\mathbf{x}, \mathbf{0})=(\mathbf{x}, \mathbf{g}(\mathbf{x}))$. Now notice for any $1 \leq k \leq n$,

$$
G\left(\mathbf{x}+h \mathbf{e}_{k}, \mathbf{0}\right)-G(\mathbf{x}, \mathbf{0})=\left(\mathbf{x}+h \mathbf{e}_{k}, \mathbf{g}\left(\mathbf{x}+h \mathbf{e}_{k}\right)\right) .
$$

Thus, the differentiability of G at $(\mathbf{x}, \mathbf{0})$ in the direction \mathbf{e}_{k} for each $1 \leq$ $k \leq n$ implies the differentiability of \mathbf{g}.
(e) Now we calculate the formula for the derivative:

Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n+m}$ such that $\Phi(\mathbf{x})=(\mathbf{x}, \mathbf{g}(\mathbf{x}))$. Then $D \Phi(\mathbf{x}) \mathbf{h}=$ $(\mathbf{h}, D \mathbf{g}(\mathbf{x}) \mathbf{h})$. Now, for all $\mathbf{x} \in U, \mathbf{f}(\Phi(\mathbf{x}))=\mathbf{f}(\mathbf{x}, \mathbf{g}(\mathbf{x}))=0$ and thus

$$
D \mathbf{f}(\mathbf{x}, \mathbf{g}(\mathbf{x})) D \Phi(\mathbf{x}) \equiv 0
$$

Evaluating this at $\mathbf{x}=\mathbf{a}$ we get

$$
D \mathbf{f}(\mathbf{a}, \mathbf{b}) D \Phi(\mathbf{a})=0 .
$$

Now note $D \mathbf{f}(\mathbf{x}, \mathbf{y}) D \Phi(\mathbf{x}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and so for a fixed $\mathbf{h} \in \mathbb{R}^{n}$ we get $0=D \mathbf{f}(\mathbf{a}, \mathbf{b}) D \Phi(\mathbf{a}) \mathbf{h}=D \mathbf{f}(\mathbf{a}, \mathbf{b})(\mathbf{h}, D \mathbf{g}(\mathbf{x}) \mathbf{h})=D \mathbf{f}^{x}(\mathbf{a}, \mathbf{b}) \mathbf{h}+D \mathbf{f}^{y}(\mathbf{a}, \mathbf{b}) D \mathbf{g}(\mathbf{x}) \mathbf{h}$.

This gives the result.
3. $(9.13: 17)$
(a) $f(x, y)=(3-x)(3-y)(x+y-3)$ vanishes at $x=3, y=3$, and $x+y=3$. We have $f(x, y)>0$ for each of the 4 conditions:

Box	$3>x$	$3>y$	$x+y>3$
Box 1	yes	yes	yes
Box 2	yes	no	no
Box 3	no	yes	no
Box 4	no	no	yes

In other words, if both x and y are big, then $f(x, y)>0$. The colored lines on the graph below indicate where the function $f(x, y)$ vanishes. Also $f(x, y)$ changes sign whenever we cross one of the colored lines, thus the gray areas indicate where $f(x, y)>0$.

(b) The partial derivatives:

$$
\begin{aligned}
& D_{1} f(x, y)=-1(3-y)(x+y-3)+(3-x)(3-y) 1=(y-3)(2 x+y-6) \\
& D_{2} f(x, y)=(3-x)(-1)(x+y-3)+(3-x)(3-y) 1=(x-3)(x+2 y-6)
\end{aligned}
$$

Thus $D_{1} f(x, y)=D_{2}(x, y)=0$ at stationary points $(3,3),(3,0),(0,3)$ and (2,2)
(c) The second derivative matrix is:

$$
H f(x, y)=\left(\begin{array}{cc}
2 y-6 & 2 x+2 y-9 \\
2 x+2 y-9 & 2 x-6
\end{array}\right)
$$

Substituting at the stationary points:

$$
\begin{array}{ll}
H f(3,3) & =\left(\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right), \quad H f(3,0)=\left(\begin{array}{cc}
-6 & -3 \\
-3 & 0
\end{array}\right), \\
H f(0,3) & =\left(\begin{array}{cc}
0 & -3 \\
-3 & -6
\end{array}\right) \quad \text { and } \quad H f(2,2)=\left(\begin{array}{cc}
-2 & -1 \\
-1 & -2
\end{array}\right)
\end{array}
$$

Thus:

(x, y)	$\operatorname{tr}(H f(x, y))$	$\operatorname{det}(H f(x, y))$	type of stationary point
$(3,3)$	0	-9	saddle
$(3,0)$	-6	-9	saddle
$(0,3)$	-6	-9	saddle
$(2,2)$	-4	3	relative or local maximum

The function has no relative minima.
(d) Setting $x=y$ the function $f(x, x)$ is a polynomial of degree 3 , thus it can be arbitrarily large and arbitrarily small too, thus it has no maxima and no minima, nor does $f(x, y)$ in general.
4. $(9.15: 8,13)$ 9.15:8 Let $g_{1}, g_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined as

$$
\begin{aligned}
& g_{1}(x, y, z)=x^{2}-x y+y^{2}-z^{2}-1 ; \\
& g_{2}(x, y, z)=x^{2}+y^{2}-1
\end{aligned}
$$

The surfaces in question are $g_{1}(x, y, z)=0$ and $g_{2}(x, y, z)=0$. We would like to minimize the distance to the origin, defined by the function $f(x, y, z)=$ $x^{2}+y^{2}+z^{2}$ on the surfaces $\left\{g_{1}(x, y, z)=g_{2}(x, y, z)=0\right\}$.

By the method of Lagrange multipliers there must be constants λ_{1} and λ_{2} such that:

$$
\nabla f=\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2}
$$

That is:

$$
(2 x, 2 y, 2 z)=\lambda_{1}(2 x-y, 2 y-x,-2 z)+\lambda_{2}(2 x, 2 y, 0)
$$

This leaves us with 5 equations:

$$
\begin{aligned}
\left(2 \lambda_{1}+2 \lambda_{2}-2\right) x-\lambda_{1} y & =0 \\
\left(2 \lambda_{1}+2 \lambda_{2}-2\right) y-\lambda_{1} x & =0 \\
-\left(2 \lambda_{1}+2\right) z & =0 \\
x^{2}-x y+y^{2}-z^{2}-1 & =0 \\
x^{2}+y^{2}-1 & =0
\end{aligned}
$$

By a straightforward case analysis the solutions are $(x, y, z)=(1,0,0),(0,1,0),(-1,0,0),(0,-1,0)$. The distance at each of these points is 1 .
9.15:13 In this problem

$$
g(x, y)=x^{2}+4 y^{2}-4
$$

The distance from the point (x, y) to the line $x+y=4$ is

$$
f(x, y)=\frac{|x+y-4|}{\sqrt{2}}
$$

Note that for any point (x, y) on the ellipse, $x+y-4<0$, thus $|x+y-4|=$ $4-x-y$.
Using Lagrange multipliers at the extrema points there is a λ such that:

$$
\nabla f=\lambda \nabla g
$$

That is

$$
\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)=\lambda(2 x, 8 y)
$$

Thus we have three equations:

$$
\begin{aligned}
-\frac{1}{\sqrt{2}} & =2 \lambda x \\
-\frac{1}{\sqrt{2}} & =8 \lambda y \\
x^{2}+4 y^{2}-4 & =0
\end{aligned}
$$

The solutions are $(x, y)= \pm\left(\frac{4}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$. Evaluating $f(x, y)$ at these solutions, we find the greatest distance is $\frac{4+\sqrt{5}}{\sqrt{2}}$ and the least distance is $\frac{4-\sqrt{5}}{\sqrt{2}}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

