Solutions for PSet 5

1. $(8.14: 10)$
(a) By hypothesis, we know $\nabla f(\mathbf{x})=\mathbf{0}$ for all $\mathbf{x} \in B(\mathbf{a})$. By definition $\nabla f(\mathbf{x})=\left(D_{1} f(\mathbf{x}), \ldots, D_{n} f(\mathbf{x})\right)$, thus $D_{1} f(\mathbf{x})=\cdots=D_{n} f(\mathbf{x})=0$. By the 1-dimensional theorem, this means that $f(\mathbf{x})$ is constant on every line $\mathbf{x}+t \mathbf{e}_{1}, \ldots \mathbf{x}+t \mathbf{e}_{n}$ for any $\mathbf{x} \in B(\mathbf{a})$. Let $f(\mathbf{a})=c$. Given $\mathbf{y} \in B(\mathbf{a})$, we will prove that $f(\mathbf{y})=c$. Let $\mathbf{y}-\mathbf{a}=d_{1} \mathbf{e}_{\mathbf{1}}+\cdots+d_{n} \mathbf{e}_{\mathbf{n}}$, then:

$$
c=f(\mathbf{a})=f\left(\mathbf{a}+d_{1} \mathbf{e}_{1}\right)=\cdots=f\left(\mathbf{a}+d_{1} \mathbf{e}_{\mathbf{1}}+\cdots+d_{n} \mathbf{e}_{\mathbf{n}}\right)=f(\mathbf{y})
$$

(b) The condition means, that \mathbf{a} is a local maximum of the function f. In particular, because $f(\mathbf{x})=\mathbf{0}$ for all $\mathbf{x} \in B(\mathbf{a}), 0$ is a maximum for all the functions $f\left(\mathbf{a}+t \mathbf{e}_{i}\right)$. By the 1-dimensional theorem $D_{i}(f(\mathbf{a}))=$ $f^{\prime}\left(\mathbf{a}+t \mathbf{e}_{i}\right)=0$, and thus

$$
\nabla f(\mathbf{a})=\left(D_{1} f(\mathbf{a}), \ldots, D_{n} f(\mathbf{a})\right)=\mathbf{0}
$$

2. (8.17:6) $f(x, y)=\sqrt{|x y|}=\sqrt{|x|} \sqrt{|y|}$
(a) $f(x, y)=0$ on the lines $(x, 0)$ and $(0, y)$. Thus $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0$ at the origin.
(b) For f to have a tangent plane at the origin, it must have a total derivative at the origin. If indeed f had a total derivative at the origin then we expect

$$
f^{\prime}((x, y) ;(1,1)) \text { to be }\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) \cdot(1,1)=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}=0+0=0 .
$$

But in reality, $f^{\prime}((x, y=x) ;(1,1))$ is the partial derivative along the line $x=y$. On this line, $f(x, x)=x$, thus $f^{\prime}((x, y) ;(1,1))=1$. This defies our expectation. Thus f cannot have a total derivative, nor a tangent plane at the origin.
3. (8.17:10) Denote $f(x, y, z)=(x-c)^{2}+y^{2}+z^{2}$ and $g(x, y, z)=x^{2}+(y-1)^{2}+z^{2}$. Then the spheres in question are given by:

$$
\begin{aligned}
L_{f}(3) & =\left\{(x, y, z): f(x, y, z)=(x-c)^{2}+y^{2}+z^{2}=3\right\} \\
L_{g}(1) & =\left\{(x, y, z): g(x, y, z)=x^{2}+(y-1)^{2}+z^{2}=1\right\}
\end{aligned}
$$

At a point (x, y, z) where the two spheres intersect:

$$
\begin{aligned}
\text { gradient of } L_{f}(3) \text { is } \nabla f(x, y, z) & =(2(x-c), 2 y, 2 z) \\
\text { gradient of } L_{g}(1) \text { is } \nabla g(x, y, z) & =(2 x, 2(y-1), 2 z)
\end{aligned}
$$

and $T\left(L_{f}(3)\right), T\left(L_{g}(1)\right)$ are the respective tangent planes of $L_{f}(3), L_{g}(1)$.
By definition, the gradient is perpendicular to the tangent plane. Or $\nabla f(x, y, z)$ is perpendicular to $T\left(L_{f}(3)\right)$ and $\nabla g(x, y, z)$ perpendicular to $T\left(L_{g}(1)\right)$. Thus the tangent planes $T\left(L_{f}(3)\right)$ and $T\left(L_{g}(1)\right)$ are perpendicular at the intersection if and only if the gradients are perpendicular to each other at the intersection:

$$
\nabla f(x, y, z) \cdot \nabla g(x, y, z)=0 \text { or } 4 x(x-c)+4 y(y-1)+4 z^{2}=0
$$

To find c for the above condition to hold, we can solve the system of 3 equations:

$$
\begin{aligned}
(x-c)^{2}+y^{2}+z^{2} & =3 \\
x^{2}+(y-1)^{2}+z^{2} & =1 \\
4 x(x-c)+4 y(y-1)+4 z^{2} & =0
\end{aligned}
$$

Add the first two equations to get $2\left(x^{2}+y^{2}+z^{2}\right)-2 x c-2 y=3-c^{2}$. This, combined with the last equation, gives $c^{2}=3$. Thus $c= \pm \sqrt{3}$.
4. Consider $\mathbf{a} \in \mathbb{R}^{n}$. To prove continuity at a we need to find a $\delta>0$ for every given $\epsilon>0$ with the property that $|\mathbf{x}-\mathbf{a}|<\delta$ implies $|f(\mathbf{x})-f(\mathbf{a})|<\epsilon$. Note that the set of points $f(\mathbf{x})$ for which $|f(\mathbf{x})-f(\mathbf{a})|<\epsilon$ are contained in an open ball $B_{\epsilon}(f(\mathbf{a}))$. Now the preimage of this open ball $f^{-1}\left(B_{\epsilon}(f(\mathbf{a}))\right)$ is open but may not be connected. That is, it may consist of the union of a few disjoint open sets. But, necessarily, one of these open sets contains a. Call this open set U. Then openness implies there exists $\delta>0$ such that $B_{\delta}(\mathbf{a}) \subset U$. Moreover, as $f(U) \subset B_{\epsilon}(f(\mathbf{a}))$, containment implies $f\left(B_{\delta}(\mathbf{a})\right) \subset B_{\epsilon}(f(\mathbf{a}))$. It follows that f is continuous.
5. $T_{\mathbf{a}}$ is defined such that:

$$
f(\mathbf{x})=f(\mathbf{a})+T_{\mathbf{a}}(\mathbf{x}-\mathbf{a})+|\mathbf{x}-\mathbf{a}| E(\mathbf{a}, \mathbf{x}-\mathbf{a})
$$

where $E(\mathbf{a}, \mathbf{x}-\mathbf{a}) \rightarrow 0$ as $|\mathbf{x}-\mathbf{a}| \rightarrow 0$.
Thus $T_{\mathbf{a}}=f$ if and only if:

$$
f(\mathbf{x})=f(\mathbf{a})+f(\mathbf{x}-\mathbf{a})+|\mathbf{x}-\mathbf{a}| E(\mathbf{a}, \mathbf{x}-\mathbf{a})
$$

where $E \rightarrow 0$ as $|\mathbf{x}-\mathbf{a}| \rightarrow 0$.
Since f is a linear transformation,

$$
f(\mathbf{x})=f(\mathbf{a})+f(\mathbf{x}-\mathbf{a})
$$

and thus $E(\mathbf{a}, \mathbf{x}-\mathbf{a}) \equiv 0$ as $|\mathbf{x}-\mathbf{a}| \rightarrow 0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

