Solutions for PSet 4

1. (B63:3)

$$
f(t)=\left\{\begin{aligned}
\left(t, t \cos \left(\frac{\pi}{t}\right)\right) & \text { for } 0<t \leq 1 \\
(0,0) & \text { for } t=0
\end{aligned}\right.
$$

$f: \mathbb{R} \rightarrow \mathbb{R}^{2}$, thus it is continuous if both $f_{1}(t)=t$ and

$$
f_{2}(t)=\left\{\begin{aligned}
t \cos \left(\frac{\pi}{t}\right) & \text { for } 0<t \leq 1 \\
0 & \text { for } t=0
\end{aligned}\right.
$$

are continuous. f_{1} is clearly continuous at any point t, and so is f_{2} at any point $t \neq 0$. For $t=0$ we have to check that if $t_{n} \rightarrow 0$, then $f_{2}\left(t_{n}\right) \rightarrow f_{2}(0)=0$:

$$
\left|f_{2}\left(t_{n}\right)\right|=\left|t_{n} \cos \left(\frac{\pi}{t_{n}}\right)\right| \leq\left|t_{n}\right|
$$

thus it tends to 0 too. Further, note that both $f_{1}(t)$ and $f_{2}(t)$ do not have any self intersections and are therefore simple curves.
Because $f(t)$ is simple and continuous over a continuous stretch of t, we can assess whether $f(t)$ has a finite arc length (is rectifiable) by:
(a) partitioning the space of t into n discrete blocks defined by vertices t_{1}, $t_{2}, \ldots t_{n}$.
(b) defining a polygonal arc connecting points $\left(t_{1}, f\left(t_{1}\right)\right),\left(t_{2}, f\left(t_{2}\right)\right), \ldots\left(t_{n}, f\left(t_{n}\right)\right)$

- this represents a sampled approximation of $f(t)$
(c) considering the limit as $n \rightarrow \infty$ of the length of this polygonal arc

For $n=5$, the partition of t is defined by the collection of points t^{\prime} in P_{5} :

$$
P_{5}=\left\{0, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1\right\}
$$

and the polygonal arc connects the points $\left(t^{\prime}, t^{\prime} \cos \left(\frac{\pi}{t^{\prime}}\right)\right)$:

$$
\left\{(0,0),\left(\frac{1}{5},-\frac{1}{5}\right),\left(\frac{1}{4}, \frac{1}{4}\right),\left(\frac{1}{3},-\frac{1}{3}\right),\left(\frac{1}{2}, \frac{1}{2}\right),(1,-1)\right\} .
$$

Notice

$$
\begin{aligned}
& \left|\pi\left(P_{n}\right)\right|=\left\|\left(1 / n,(-1)^{n} / n\right)-(0,0)\right\|+\sum_{k=2}^{n} \sqrt{\left(\frac{1}{k}-\frac{1}{k-1}\right)^{2}+\left(\frac{(-1)^{k}}{k}-\frac{(-1)^{k-1}}{k-1}\right)^{2}} \\
& =\frac{\sqrt{2}}{n}+\sum_{k=2}^{n} \sqrt{\left(\frac{1}{k(k-1)}\right)^{2}+\left(\frac{(-1)^{k} 2 k+(-1)^{k+1}}{k(k-1)}\right)^{2}} \\
& =\frac{\sqrt{2}}{n}+\sum_{k=2}^{n} \frac{1}{k(k-1)} \sqrt{4 k^{2}-4 k+2}>\frac{\sqrt{2}}{n}+\sum_{k=2}^{n} \frac{2 k-1}{k(k-1)}=\frac{\sqrt{2}}{n}+\sum_{k=2}^{n} \frac{1}{(k-1)}+\frac{1}{k}>\frac{\sqrt{2}}{n}+\sum_{k=2}^{n} \frac{2}{k} .
\end{aligned}
$$

(This is not quite what the notes have, but nearly so.)
Thus the length of P_{n} tends to ∞ as n goes to ∞, so $f(t)$ cannot be rectifiable.
2. (14.13:21) By the chain-rule the derivative of $Y(t)=X[u(t)]$ is $Y^{\prime}(t)=$ $u^{\prime}(t) X^{\prime}[u(t)]$. Using this:

$$
\int_{c}^{d}\left|Y^{\prime}(t)\right| d t=\int_{c}^{d}\left|u^{\prime}(t) X^{\prime}[u(t)]\right| d t
$$

Substituting $u=u(t)$

$$
\int_{c}^{d}\left|Y^{\prime}(t)\right| d t=\int_{u(c)}^{u(d)} \frac{\left|u^{\prime}(t) X^{\prime}[u(t)]\right|}{u^{\prime}(t)} d u
$$

But $u^{\prime}(t)>0$, as a re-parametrization of a curve is by definition an increasing function (and further by assumption it is strictly increasing). Therefore $\frac{\left|u^{\prime}(t)\right|}{u^{\prime}(t)}=1$ and

$$
\int_{c}^{d}\left|Y^{\prime}(t)\right| d t=\int_{u(c)}^{u(d)}\left|X^{\prime}(u)\right| d u
$$

3. $(14.15: 11)$
(a) With the notation of the exercise

$$
\mathbf{v}(t)=5(\cos \alpha(t) \mathbf{i}+\sin \alpha(t) \mathbf{j})
$$

and

$$
\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=5 \alpha^{\prime}(t)(-\sin \alpha(t) \mathbf{i}+\cos \alpha(t) \mathbf{j})
$$

then

$$
\kappa(t) \equiv \frac{|\mathbf{a}(t) \times \mathbf{v}(t)|}{v(t)^{3}}=\frac{\left|25 \alpha^{\prime}(t)\right|}{125}=2 t
$$

This means:

$$
\left|\alpha^{\prime}(t)\right|=10 t
$$

As a result, $\alpha^{\prime}(t)$ could be $-10 t$ or $10 t$. Since $\alpha(0)=\frac{\pi}{2}$ and the curve stays in the positive half plane, i.e. $\alpha(t)<\frac{\pi}{2} \forall t$, we see that $\alpha^{\prime}(0)<0$.

Then by continuity $\alpha^{\prime}(t)<0$. Thus the correct solution is $\alpha^{\prime}(t)=-10 t$. Integrating we get $\alpha(t)=-5 t^{2}+C$. As $\alpha(0)=C, C=\frac{\pi}{2}$ and we get

$$
\alpha(t)=-5 t^{2}+\frac{\pi}{2} .
$$

(b) We have already computed everything necessary:

$$
\mathbf{v}(t)=5(\cos \alpha(t) \mathbf{i}+\sin \alpha(t) \mathbf{j})=5\left(\cos \left(-5 t^{2}+\frac{\pi}{2}\right) \mathbf{i}+\sin \left(-5 t^{2}+\frac{\pi}{2}\right) \mathbf{j}\right)
$$

4. Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous. Given an open set $U \subset \mathbb{R}^{m}$ we want to prove that $f^{-1}(U)$ is open. This means that for any point $x \in f^{-1}(U)$ we need to show there exists $R>0$ such that $B_{R}(x) \subset f^{-1}(U)$.
Given $x \in f^{-1}(U)$, we know $f(x) \in U$. As U is open, there exists $r>0$ such that $B_{r}(f(x)) \subset U$. Recall f is continuous at x, thus for any $\epsilon>0$ there is a $\delta>0$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\epsilon$. Choosing $\epsilon=r$, find δ. Then continuity tells us

$$
f\left(B_{\delta}(x)\right) \subset B_{r}(f(x)) \subset U
$$

It follows immediately that $B_{\delta}(x) \subset f^{-1}(U)$. Thus, $f^{-1}(U)$ is open.
5. (8.5:2,4) 8.5:2 Let

$$
L:=\lim _{(x, y) \rightarrow(a, b)} f(x, y) .
$$

We would like to prove that if

$$
\lim _{x \rightarrow a}(f(x, y)) \text { exists for every } y
$$

then

$$
\lim _{y \rightarrow b} \lim _{x \rightarrow a}(f(x, y))=L
$$

Let us denote $\lim _{x \rightarrow a} f(x, y)=L_{y}$ for each y. Then we need to show $\lim _{y \rightarrow b} L_{y}=$ L. Suppose not. Then for some $\epsilon>0$ there exists a sequence $y_{n} \rightarrow b$ such that $\left|L_{y_{n}}-L\right|>\epsilon$. Reindex the sequence y_{n}, and perhaps remove some elements, so that $\left|y_{n}-b\right|<1 / n$ for each n. Now, for each n choose x_{n} such that $\left|x_{n}-a\right|<1 / n$ and

$$
\left|f\left(x_{n}, y_{n}\right)-L_{y_{n}}\right|<\epsilon / 2
$$

Now consider for each n,

$$
\left|f\left(x_{n}, y_{n}\right)-L\right| \geq\left|L-L_{y_{n}}\right|-\left|L_{y_{n}}-f\left(x_{n}, y_{n}\right)\right|>\epsilon-\epsilon / 2=\epsilon / 2>0 .
$$

Thus, we constructed a sequence $\left(x_{n}, y_{n}\right) \rightarrow(a, b)$ such that $f\left(x_{n}, y_{n}\right)$ does not converge to L. This implies a contradiction and it follows that one must have $\lim _{y \rightarrow b} L_{y} \rightarrow L$.

8.5:4

$$
f(x, y)=\frac{x^{2} y^{2}}{x^{2} y^{2}+(x-y)^{2}} \text { whenever } x^{2} y^{2}+(x-y)^{2} \neq 0
$$

Then

$$
\lim _{y \rightarrow 0} \lim _{x \rightarrow 0}(f(x, y))=\lim _{y \rightarrow 0} 0=0
$$

and similarly

$$
\lim _{x \rightarrow 0} \lim _{y \rightarrow 0}(f(x, y))=\lim _{x \rightarrow 0} 0=0
$$

But for $y=x$

$$
\lim _{x \rightarrow 0} f(x, x)=\lim _{x \rightarrow 0} \frac{x^{4}}{x^{4}}=1
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

