
Solutions for PSet 4 
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are continuous. f1 is clearly continuous at any point t, and so is f2 at any point 
t = 0.  For  t = 0 we have to check that if tn → 0, then f2(tn) → f2(0) = 0: 
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tn 
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thus it tends to 0 too. Further, note that both f1(t) and f2(t) do not have any 
self intersections and are therefore simple curves. 

Because f(t) is simple and continuous over a continuous stretch of t, we can 
assess whether f(t) has a finite arc length (is rectifiable) by: 

(a) partitioning the space of t into n discrete blocks defined by vertices t1, 
t2, . . . t n. 

(b) defining a polygonal arc connecting points (t1, f(t1)), (t2, f(t2)),  . . . (tn, f(tn)) 
- this represents a sampled approximation of f(t) 

(c) considering the limit as n → ∞ of the length of this polygonal arc 

For n = 5, the partition of t is defined by the collection of points t′ in P5: 
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(This is not quite what the notes have, but nearly so.)


Thus the length of Pn tends to ∞ as n goes to ∞, so  f(t) cannot be rectifiable.


2. (14.13:21) By the	 chain-rule the derivative of Y (t) =  X[u(t)] is Y ′(t) =  
u′(t)X ′[u(t)]. Using this: 

�	 d � d 

|Y ′(t)|dt = |u ′(t)X ′[u(t)]|dt 
c	 c 

Substituting u = u(t) 

�	 d u(d) 

c	
|Y ′(t)|dt = 

u(c) 

|u′(t)
u

X
′(

′

t

[

) 
u(t)]|

du 

But u′(t) > 0, as a re-parametrization of a curve is by definition an increas
ing function (and further by assumption it is strictly increasing). Therefore 
|u′(t)| 

= 1 and 
u′(t) 

d	 u(d) 

|Y ′(t)|dt = |X ′(u)| du 
c	 u(c) 

3. (14.15:11) 

(a) With the notation of the exercise 

v(t) = 5(cos α(t)i + sin α(t)j) 

and 
a(t) =  v ′(t) = 5α′(t)(− sin α(t)i + cos α(t)j) 

then
 |a(t) × v(t)| |25α′(t)|

κ(t) ≡ = = 2t 

v(t)3 125 

This means: 
|α′(t)| = 10t. 

π 
As a result, α′(t) could be −10t or 10t. Since α(0) = and the curve 

2
π 

stays in the positive half plane, i.e. α(t) < ∀t, we see that α′(0) < 0. 
2 
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Then by continuity α′(t) < 0. Thus the correct solution is α′(t) =  −10t. 
π 

Integrating we get α(t) =  −5t2 + C. As  α(0) = C, C = and we get 
2 

π 
α(t) =  −5t2 + . 

2 

(b) We have already computed everything necessary: 

π π 
v(t) = 5(cos  α(t)i + sin α(t)j) = 5(cos(−5t2 + )i + sin(−5t2 + )j)

2 2 

4. Assume f : Rn → Rm is continuous. Given an open set U ⊂ Rm we want to 
prove that f−1(U) is open. This means that for any point x ∈ f−1(U) we need 
to show there exists R > 0 such that BR(x) ⊂ f−1(U). 

Given x ∈ f−1(U), we know f(x) ∈ U . As  U is open, there exists r >  0 such 
that Br(f(x)) ⊂ U . Recall f is continuous at x, thus for any ε >  0 there is a 
δ > 0 such that |x − y| < δ  implies |f(x) − f(y)| < ε. Choosing ε = r, find δ. 
Then continuity tells us 

f(Bδ(x)) ⊂ Br(f(x)) ⊂ U. 

It follows immediately that Bδ(x) ⊂ f−1(U). Thus, f−1(U) is open. 

5. (8.5:2,4) 8.5:2 Let 
L := lim f(x, y). 

(x,y)→(a,b) 

We would like to prove that if 

lim(f(x, y)) exists for every y, 
x→a 

then

lim lim(f(x, y)) = L

y→b x→a 

Let us denote limx→a f(x, y) =  Ly for each y. Then we need to show limy→b Ly = 
L. Suppose not. Then for some ε >  0 there exists a sequence yn → b such 
that |Lyn − L| > ε. Reindex the sequence yn, and perhaps remove some ele
ments, so that |yn − b| < 1/n for each n. Now, for each n choose xn such that 
|xn − a| < 1/n and 

|f(xn, yn) − Lyn | < ε/2. 
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Now consider for each n, 

|f(xn, yn) − L| ≥ |L − Lyn | − |Lyn − f(xn, yn)| > ε  − ε/2 =  ε/2 > 0. 

Thus, we constructed a sequence (xn, yn) → (a, b) such that f(xn, yn) does not  
converge to L. This implies a contradiction and it follows that one must have 
limy→b Ly → L. 

8.5:4 
2 2 

f(x, y) =  
2

x y
whenever x 2 y 2 + (x − y)2 = 0�

x y2 + (x − y)2 

Then 
lim lim(f(x, y)) = lim 0 = 0, 
y→0 x→0 y→0 

and similarly 
lim lim(f(x, y)) = lim 0 = 0. 
x→0 y→0 x→0 

But for y = x 
4x

lim f(x, x) = lim = 1. 
x→0 x→0 x4 
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