Solution for PSet 2

1. (a) First, note $T_{\theta}(1,0)=(\cos \theta, \sin \theta)$ and $T_{\theta}(0,1)=(\cos (\theta+\pi / 2), \sin (\theta+$ $\pi / 2))=(-\sin \theta, \cos \theta)$ so the matrix is

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

(b) There are two ways to determine this problem, but perhaps the easiest is to find $T_{-\theta}$. In that case $T_{-\theta}(1,0)=(\cos (-\theta), \sin (-\theta))=(\cos \theta,-\sin \theta)$ and $T_{-\theta}(0,1)=(\cos (\pi / 2-\theta), \sin (\pi / 2-\theta))=(\sin \theta, \cos \theta)$. So

$$
T_{\theta}^{-1}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
$$

Finally, to check we note

$$
T T^{-1}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
\cos ^{2} \theta+\sin ^{2} \theta & 0 \\
0 & \cos ^{2} \theta+\sin ^{2} \theta
\end{array}\right)
$$

This evaluates to

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

2. First note that $T(1,0,0)=(1,0)=1 \cdot(1,0)+0 \cdot(1,-1) ; \quad T(1,1,0)=$ $(1,1)=2 \cdot(1,0)-1 \cdot(1,-1) ; \quad T(1,1,1)=(1,1)=2 \cdot(1,0)-1 \cdot(1,-1)$ and thus the matrix for T in these bases is

$$
\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & -1 & -1
\end{array}\right) .
$$

To find the matrix for S we perform the same process:

$$
\begin{aligned}
& S(1,0,0)=(-1,0,0)=-1 \cdot(1,0,0)+0 \cdot(1,1,0)+0 \cdot(1,1,1) . \\
& S(1,1,0)=(-1,-1,0)=0 \cdot(1,0,0)-1 \cdot(1,1,0)+0 \cdot(1,1,1) \\
& S(1,1,1)=(-1,-1,-1)=0 \cdot(1,0,0)+0 \cdot(1,1,0)-1 \cdot(1,1,1)
\end{aligned}
$$

Thus the matrix for this transformation is

$$
\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Thus we find the matrix for $T S$ by multiplication:

$$
\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & -1 & -1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)=\left(\begin{array}{ccc}
-1 & -2 & -2 \\
0 & 1 & 1
\end{array}\right)
$$

3. (2.20:9) The row reduced forms are shown below (without elaborating each step involved). First, the augmented matrix and the first few reductions:

$$
\left(\begin{array}{ccc|c}
1 & 1 & 2 & 2 \\
2 & -1 & 3 & 2 \\
5 & -1 & a & 6
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 2 & 2 \\
0 & -3 & -1 & -2 \\
0 & 6 & 10-a & 4
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 1 & 2 & 2 \\
0 & 1 & 1 / 3 & 2 / 3 \\
0 & 8-a & 0
\end{array}\right)
$$

Now if $8-a \neq 0$ then we can divide the last row by $8-a$ and simplify:

$$
\left(\begin{array}{ccc:c}
1 & 1 & 2 & 2 \\
0 & 1 & 0 & 2 / 3 \\
0 & & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}
1 & 1 & 0 & 2 \\
0 & 1 & 0 & 2 / 3 \\
0 & & 1 & 0
\end{array}\right)
$$

to get

$$
\left(\begin{array}{ccc|c}
1 & 0 & 0 & 4 / 3 \\
0 & 1 & 0 & 2 / 3 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

and thus the unique solution is $x=4 / 3, y=2 / 3, z=0$.

Now if $a=8$, then z is a free variable and we reduce

$$
\left(\begin{array}{ccc|c}
1 & 1 & 2 & 2 \\
0 & 1 & 1 / 3 & 2 / 3 \\
0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 0 & 5 / 3 & 4 / 3 \\
0 & 1 & 1 / 3 & 2 / 3 \\
0 & & 0 & 0
\end{array}\right)
$$

and thus $x+5 / 3 z=4 / 3$ and $y+1 / 3 z=2 / 3$. So solutions are of the form

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
4 / 3 \\
2 / 3 \\
0
\end{array}\right)+t\left(\begin{array}{c}
5 / 3 \\
1 / 3 \\
-1
\end{array}\right)
$$

4. (a) First, if λ is an eigenvalue for A then there exists $\mathbf{x} \neq \mathbf{0}$ such that $A \mathbf{x}=\lambda \mathbf{x}$. That is $A \mathbf{x}-\lambda I_{n} \mathbf{x}=\mathbf{0}$ or $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}$ for $\mathbf{x} \neq \mathbf{0}$. Thus, the null space of $A-\lambda I_{n}$ has positive dimension and thus $A-\lambda I_{n}$ is not an invertible matrix. This implies $\operatorname{det}\left(A-\lambda I_{n}\right)=0$.
Now, going in the reverse direction, if $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ then null space $N\left(A-\lambda I_{n}\right)$ contains a non-zero vector. That is, there exists \mathbf{x} such that $\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}$. But this exactly corresponds to $A \mathbf{x}=\lambda I_{n} \mathbf{x}=\lambda \mathbf{x}$.
(b) Consider the matrix

$$
A-\lambda I_{3}=\left(\begin{array}{ccc}
4-\lambda & 1 & -2 \\
16 & -2-\lambda & -8 \\
4 & -2 & -2-\lambda
\end{array}\right)
$$

A tedious calculation gives $\operatorname{det}\left(A-\lambda I_{3}\right)=36 \lambda-\lambda^{3}=\lambda\left(36-\lambda^{2}\right)=$ $\lambda(6-\lambda)(6+\lambda)$. This is zero precisely when $\lambda=0,-6,6$ and thus these are the eigenvalues for the matrix A.
(c) Since 0 is an eigenvalue, there exists $\mathbf{x} \neq \mathbf{0}$ such that $A \mathbf{x}=0 \cdot \mathbf{x}=\mathbf{0}$. Thus, the null space of A is non-trivial. This immediately implies A is not invertible.
5. $X^{3}=Y^{3}$ and $X^{2} Y=Y^{2} X$ taken together allow us to write

$$
\left(X^{2}+Y^{2}\right) X=X^{3}+Y^{2} X=Y^{3}+X^{2} Y=\left(X^{2}+Y^{2}\right) Y
$$

Notice that if $X \neq Y$ then $X^{2}+Y^{2}$ cannot be invertible. Thus, a necessary condition is that $X=Y$.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

