Rough Solutions for PSet 12

1. (12.10:7) We first parameterize the sphere of radius a by $r(\phi, \theta)=(a \cos \theta \sin \phi, a \sin \theta \sin \phi, a \cos \phi)$ where $0 \leq \theta \leq 2 \pi$ and $0 \leq \phi \leq \pi$. (We write ϕ first so that the normal points outward.) Then the integrals become

$$
\begin{aligned}
& \iint_{S} x y d y \wedge d z=\int_{0}^{\pi} \int_{0}^{2 \pi} a^{2} \sin ^{2} \phi \cos \theta \sin \theta\left(a^{2} \cos \theta \sin ^{2} \phi\right) d \theta d \phi \\
& \iint_{S} y z d z \wedge d x=\int_{0}^{\pi} \int_{0}^{2 \pi} a^{2} \sin \theta \sin \phi \cos \phi\left(a^{2} \sin \theta \sin ^{2} \phi\right) d \theta d \phi \\
& \iint_{S} x^{2} d x \wedge d y=\int_{0}^{\pi} \int_{0}^{2 \pi} a^{2} \cos ^{2} \theta \sin ^{2} \phi\left(a^{2} \cos \phi \sin \phi\right) d \theta d \phi
\end{aligned}
$$

From here the work is standard. Notice the second and third integral can be combined and simplified.
2. (12.10:12) We want to evaluate $\iint_{S} F \cdot n d S$ and here $n=(x, y, z)$ since S is a hemisphere. Thus $F \cdot n=x^{2}-2 x y-y^{2}+z^{2}$. As with the problem above, we parameterize the hemisphere by $r(\phi, \theta)$ where $0 \leq \phi \leq \pi / 2$ and $\theta \in[0,2 \pi]$. So the problem is to evaluate

$$
\int_{0}^{\pi / 2} \int_{0}^{2 \pi}\left(\cos ^{2} \theta \sin ^{2} \phi-2 \cos \theta \sin \theta \sin ^{2} \phi-\sin ^{2} \theta \sin ^{2} \phi+\cos ^{2} \phi\right) \sin \phi d \theta d \phi
$$

The first three terms integrate to zero in θ so the only term that carries through to the second integral is $2 \pi \int_{0}^{\pi / 2} \cos ^{2} \phi \sin \phi d \phi=2 \pi / 3$.
3. (12.10:13) There's actually nothing to add in. This is because $F \cdot n$ on the disk is zero. $(z=0$ on the x, y-plane and $n=(0,0,-1))$. The book apparently has a different answer. So let's just check this by using the divergence theorem. That is

$$
\iiint_{V} \operatorname{div}(F) d x d y d z=\iiint_{V} 1 d x d y d z=\operatorname{Vol}(V)
$$

where V is the upper solid hemisphere. Thus, $\operatorname{Vol}(V)=2 \pi / 3$. But since

$$
\iiint_{V} \operatorname{div}(F) d x d y d z=\iint_{S_{c a p}} F \cdot n d S_{c a p}+\iint_{S_{d i s k}} F \cdot n d S_{d i s k}
$$

we see the second term can contribute nothing.
4. (12.13:3) The line integral of interest will be over the square with side length 2 , with two sides on the x - and y-axes. Before we write out all of the details, notice that on the x, y-plane, $F(x, y, 0)=(y, 0,0)$ so the only parts of the line integral that matter are the parts parallel to the x-axis (do $d x \neq 0$). Thus, the problem reduces to finding

$$
\int_{0}^{2} F(t, 0,0) \cdot(1,0,0) d t-\int_{0}^{2} F(t, 2,0) \cdot(1,0,0) d t
$$

The first integral is zero since $F \equiv 0$ on that curve. The second becomes

$$
-\int_{0}^{2} 2 d t=-4
$$

5. (12.13:11) It is enough to show that $\nabla \times(\mathbf{a} \times \mathbf{r})=2 \mathbf{a}$. Then we can use Stokes' Theorem:

$$
\int_{\partial S}(\mathbf{a} \times \mathbf{r}) \cdot d \gamma=\iint_{S} \nabla \times(\mathbf{a} \times \mathbf{r}) \cdot n d S
$$

But this is just a straightforward calculation. Let $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{r}=$ (x, y, z). Then

$$
\mathbf{a} \times \mathbf{r}=\left(a_{2} z-a_{3} y, a_{3} x-a_{1} z, a_{1} y-a_{2} x\right)
$$

Taking

$$
\operatorname{curl}(\mathbf{a} \times \mathbf{r})=\left(a_{1}+a_{1}, a_{2}+a_{2}, a_{3}+a_{3}\right)
$$

gives the result.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

