Solutions for PSet 10

1. (E7:1,2)

1 Let l be the arclength of C, and parameterize C by its arclength: $\alpha(t)=$ $(x(t), y(t))$. Then $\alpha^{\prime}(t)=1$ thus $\mathbf{n}(t)=\left(y^{\prime}(t),-x^{\prime}(t)\right)$.
We have

$$
\int_{C} \mathbf{f} \cdot \mathbf{n} d s=\int_{0}^{l}(P(\alpha(t)), Q(\alpha(t))) \cdot\left(y^{\prime}(t),-x^{\prime}(t)\right) d t=\int_{C}-Q d x+P d y
$$

2 Using Green's Theorem for the function $\mathbf{g}=(-Q, P)$

$$
\iint_{R}\left[\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right] d x d y=\int_{C}-Q d x+P d y
$$

But part(1) above gives us the value of the RHS. Combining, we have

$$
\iint_{R}\left[\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right] d x d y=\int_{C} \mathbf{f} \cdot \mathbf{n} d s
$$

2. (11.22:2) Q can be written as the sum of two functions $Q=Q_{1}+Q_{2}$, where $Q_{1}=-x^{2} y e^{-y^{2}}$ and $Q_{2}=\frac{1}{x^{2}+y^{2}}$. Thus, the integral to evaluate is

$$
\int_{C} P d x+Q_{1} d y+Q_{2} d y
$$

Let R_{1} be the square $\{|x| \leq a,|y| \leq a\}$ and C its boundary. First note that

$$
\frac{\partial P}{\partial y}=-2 y x e^{-y^{2}}=\frac{\partial Q_{1}}{\partial x}
$$

Then, by Green's theorem:

$$
\int_{C} P d x+Q_{1} d y=\iint_{R_{1}}\left[\frac{\partial P}{\partial y}-\frac{\partial Q_{1}}{\partial x}\right] d x d y=0
$$

To compute the remaining part $\int_{C} Q_{2} d y$, first observe that the integral will certainly be zero along $y= \pm a$ as there one has $d y \equiv 0$. So, we can compute

$$
\int_{C} Q_{2} d y=\int_{-a}^{a} \frac{d t}{a^{2}+t^{2}}-\int_{-a}^{a} \frac{d t}{a^{2}+t^{2}}=0
$$

Notice the sign on the second integral corresponds to the fact that the direction of the parameterized curve is opposite the counterclockwise orientation on the square.
3. (11.22:4) Note that

$$
\mathbf{f} \cdot \mathbf{g}=v\left(\frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}\right)+u\left(\frac{\partial v}{\partial x}-\frac{\partial v}{\partial y}\right)=v \frac{\partial u}{\partial x}+u \frac{\partial v}{\partial x}-v \frac{\partial u}{\partial y}-u \frac{\partial v}{\partial y}=\frac{\partial}{\partial x}(u v)-\frac{\partial}{\partial y}(u v)
$$

Applying Green's Theorem for the function $\mathbf{h}=(u v, u v)$:

$$
\iint_{R} \mathbf{f} \cdot \mathbf{g} d x d y=\iint_{R}\left[\frac{\partial}{\partial x}(u v)-\frac{\partial}{\partial y}(u v)\right] d x d y=\int_{C} u v(d x+d y)=\int_{C}(1)(y)(d x+d y)
$$

Parameterize the circle by $\mathbf{s}(t)=(\cos t, \sin t)$ then

$$
\iint_{R} \mathbf{f} \cdot \mathbf{g} d x d y=\int_{C} y(d x+d y)=\int_{0}^{2 \pi} \sin t(-\sin t+\cos t) d t=-\pi
$$

4. (11.22:8) If C is parameterized by arclength $s(t)=(x(t), y(t))$ then $\mathbf{n}=$ $\left(y^{\prime},-x^{\prime}\right)$
(a) We can write

$$
\begin{aligned}
\int_{C} \frac{\partial g}{\partial n} d s & =\int_{C} \nabla g \cdot \mathbf{n} d s= \\
\int_{C}\left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}\right) \cdot\left(\frac{\partial y}{\partial t}, \frac{\partial x}{\partial t}\right) d t & =\int_{C}\left[\frac{\partial g}{\partial x} \frac{\partial y}{\partial t}-\frac{\partial g}{\partial y} \frac{\partial x}{\partial t}\right] d t=\int_{C} \frac{\partial g}{\partial x} d y-\frac{\partial g}{\partial y} d x
\end{aligned}
$$

Using Green's Theorem we get

$$
\iint_{R}\left[\frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial^{2} g}{\partial y^{2}}\right] d x d y=\iint_{R} \nabla^{2} g d x d y
$$

(b) Similarly

$$
\begin{aligned}
\int_{C} f \frac{\partial g}{\partial n} d s & =\int_{C} f \frac{\partial g}{\partial x} d y-f \frac{\partial g}{\partial y} d x \\
& =\iint_{R}\left[\frac{\partial f}{\partial x} \frac{\partial g}{\partial x}+f \frac{\partial^{2} g}{\partial x^{2}}+\frac{\partial f}{\partial y} \frac{\partial g}{\partial y}+f \frac{\partial^{2} g}{\partial y^{2}}\right] d x d y \\
& =\iint_{R}\left[\nabla f \cdot \nabla g+f \nabla^{2} g\right] d x d y
\end{aligned}
$$

(c) To prove this part, apply part (b) with the roles of f and g reversed. Then subtract this equation from the equation stated in part (b).
5. (11.25:3) Whenever C_{1} and C_{2} cobound a region $R_{1} \subset R$ we have

$$
\int_{C_{1}} P d x+Q d y-\int_{C_{2}} P d x+Q d y=\iint_{R_{1}}\left[\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right] d x d y
$$

This evaluates to 0 when $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$. Thus

$$
\int_{C_{1}} P d x+Q d y=\int_{C_{2}} P d x+Q d y
$$

Let C be a Jordan curve, oriented counterclockwise that does not contract in the annulus. Since one cannot apply Green's Theorem on this region $\int_{C} P d x+$ $Q d y=A$ for some $A \in \mathbb{R}$, not necessarily zero. For example when $(P, Q)=$ $\left(\frac{x}{x^{2}+y^{2}},-\frac{y}{x^{2}+y^{2}}\right)$ on $R=\left\{1 \leq x^{2}+y^{2} \leq 2\right\}$, we have $\int_{C} P d x+Q d y=2 \pi$ (as we will see in (11.25:1)). Now any Jordan curve C^{\prime} in R either bounds a simply connected region or it cobounds a region with C or $-C$. (We are somewhat glossing over the difficulty that C, C^{\prime} might intersect. But this problem can be easily rectified by choosing a third curve that cobounds with both C and C^{\prime} and intersects neither of them.) In the first case, using Green's Theorem implies

$$
\int_{C^{\prime}} P d x+Q d y=\iint_{D} \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}=0
$$

where here $D \subset R$ and $\partial D=C^{\prime}$.
In the second case, we use the observations outlined initially to determine

$$
\int_{C^{\prime}} P d x+Q d y= \pm \int_{C} P d x+Q d y= \pm A
$$

Thus there are 3 possible values for line integrals along piecewise smooth Jordan curves.
6. (11.25:1)
(a) First let B_{r} (boundary of disc D_{r}) be a circle around $(0,0)$ with radius r. We can parameterize B_{r} by $\mathbf{s}(t)=(r \cos t, r \sin t)$. Then $P=r \sin t / r^{2}$ and $Q=-r \cos t / r^{2}$. So

$$
\begin{aligned}
\int_{B_{r}} P d x+Q d y & =\int_{0}^{2 \pi}\left(r \sin t / r^{2}\right)(-r \sin t) d t+\left(-r \cos t / r^{2}\right)(r \cos t) d t \\
& =\int_{0}^{2 \pi} \frac{-r^{2}}{r^{2}} d t=-2 \pi
\end{aligned}
$$

For any piecewise smooth Jordan curve C that bounds a region R that contains (0,0) we can choose r small enough so that the disc D_{r} of radius r lies inside C. Then $R-D_{r}$ is a region where $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ and these partial derivatives are well defined. Thus, as in the previous exercise we have that

$$
\int_{C} P d x+Q d y= \pm \int_{B_{r}} P d x+Q d y= \pm 2 \pi
$$

The sign depends on the orientation of C with respect to the orientation of B_{r}. The integral is positive if C is oriented clockwise and negative otherwise.
(b) If $(0,0)$ is outside the region then in the whole region $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ (and these partial derivatives are everywhere well defined). Thus we can once more use Green's Theorem to see that $\int_{C} P d x+Q d y=0$.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

