Solutions for PSet 10

1. (E7:1,2)

1 Let *l* be the arclength of *C*, and parameterize *C* by its arclength: $\alpha(t) = (x(t), y(t))$. Then $\alpha'(t) = 1$ thus $\mathbf{n}(t) = (y'(t), -x'(t))$. We have

$$\int_C \mathbf{f} \cdot \mathbf{n} \, ds = \int_0^l \left(P(\alpha(t)), Q(\alpha(t)) \right) \cdot \left(y'(t), -x'(t) \right) \, dt = \int_C -Q \, dx + P \, dy$$

2 Using Green's Theorem for the function $\mathbf{g} = (-Q, P)$

$$\int \int_{R} \left[\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right] \, dx \, dy = \int_{C} -Q \, dx + P \, dy$$

But part(1) above gives us the value of the RHS. Combining, we have

$$\int \int_{R} \left[\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right] \, dx \, dy = \int_{C} \mathbf{f} \cdot \mathbf{n} \, ds$$

2. (11.22:2) Q can be written as the sum of two functions $Q = Q_1 + Q_2$, where $Q_1 = -x^2 y e^{-y^2}$ and $Q_2 = \frac{1}{x^2 + y^2}$. Thus, the integral to evaluate is

$$\int_C P \, dx + Q_1 \, dy + Q_2 \, dy.$$

Let R_1 be the square $\{|x| \le a, |y| \le a\}$ and C its boundary. First note that

$$\frac{\partial P}{\partial y} = -2yxe^{-y^2} = \frac{\partial Q_1}{\partial x}$$

Then, by Green's theorem:

$$\int_{C} P \, dx + Q_1 \, dy = \int \int_{R_1} \left[\frac{\partial P}{\partial y} - \frac{\partial Q_1}{\partial x} \right] \, dx \, dy = 0.$$

To compute the remaining part $\int_C Q_2 dy$, first observe that the integral will certainly be zero along $y = \pm a$ as there one has $dy \equiv 0$. So, we can compute

$$\int_C Q_2 dy = \int_{-a}^a \frac{dt}{a^2 + t^2} - \int_{-a}^a \frac{dt}{a^2 + t^2} = 0.$$

Notice the sign on the second integral corresponds to the fact that the direction of the parameterized curve is opposite the counterclockwise orientation on the square.

3. (11.22:4) Note that

$$\mathbf{f} \cdot \mathbf{g} = v \left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} \right) + u \left(\frac{\partial v}{\partial x} - \frac{\partial v}{\partial y} \right) = v \frac{\partial u}{\partial x} + u \frac{\partial v}{\partial x} - v \frac{\partial u}{\partial y} - u \frac{\partial v}{\partial y} = \frac{\partial}{\partial x} (uv) - \frac{\partial}{\partial y} (uv)$$

Applying Green's Theorem for the function $\mathbf{h} = (uv, uv)$:

$$\int \int_{R} \mathbf{f} \cdot \mathbf{g} \, dx \, dy = \int \int_{R} \left[\frac{\partial}{\partial x} (uv) - \frac{\partial}{\partial y} (uv) \right] \, dx \, dy = \int_{C} uv \left(dx + dy \right) = \int_{C} (1)(y) \left(dx + dy \right)$$

Parameterize the circle by $\mathbf{s}(t) = (\cos t, \sin t)$ then

$$\int \int_{R} \mathbf{f} \cdot \mathbf{g} dx \, dy = \int_{C} y \left(dx + dy \right) = \int_{0}^{2\pi} \sin t \left(-\sin t + \cos t \right) dt = -\pi$$

- 4. (11.22:8) If C is parameterized by arclength s(t)=(x(t),y(t)) then $\mathbf{n}=(y',-x')$
 - (a) We can write

$$\int_{C} \frac{\partial g}{\partial n} \, ds = \int_{C} \nabla g \cdot \mathbf{n} \, ds =$$

$$\int_{C} \left(\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y} \right) \cdot \left(\frac{\partial y}{\partial t}, \frac{\partial x}{\partial t} \right) \, dt = \int_{C} \left[\frac{\partial g}{\partial x} \frac{\partial y}{\partial t} - \frac{\partial g}{\partial y} \frac{\partial x}{\partial t} \right] \, dt = \int_{C} \frac{\partial g}{\partial x} \, dy - \frac{\partial g}{\partial y} \, dx$$

Using Green's Theorem we get

$$\int \int_{R} \left[\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right] \, dx \, dy = \int \int_{R} \nabla^2 g \, dx \, dy$$

(b) Similarly

$$\begin{split} \int_C f \frac{\partial g}{\partial n} \, ds &= \int_C f \frac{\partial g}{\partial x} \, dy - f \frac{\partial g}{\partial y} \, dx \\ &= \int \int_R \left[\frac{\partial f}{\partial x} \frac{\partial g}{\partial x} + f \frac{\partial^2 g}{\partial x^2} + \frac{\partial f}{\partial y} \frac{\partial g}{\partial y} + f \frac{\partial^2 g}{\partial y^2} \right] \, dx \, dy \\ &= \int \int_R \left[\nabla f \cdot \nabla g + f \nabla^2 g \right] \, dx \, dy \end{split}$$

- (c) To prove this part, apply part (b) with the roles of f and g reversed. Then subtract this equation from the equation stated in part (b).
- 5. (11.25:3) Whenever C_1 and C_2 cobound a region $R_1 \subset R$ we have

$$\int_{C_1} P \, dx + Q \, dy - \int_{C_2} P \, dx + Q \, dy = \int \int_{R_1} \left[\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right] \, dx \, dy$$

This evaluates to 0 when $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Thus

$$\int_{C_1} P \, dx + Q \, dy = \int_{C_2} P \, dx + Q \, dy$$

Let C be a Jordan curve, oriented counterclockwise that does not contract in the annulus. Since one cannot apply Green's Theorem on this region $\int_C P dx + Q dy = A$ for some $A \in \mathbb{R}$, not necessarily zero. For example when $(P,Q) = (\frac{x}{x^2 + y^2}, -\frac{y}{x^2 + y^2})$ on $R = \{1 \le x^2 + y^2 \le 2\}$, we have $\int_C P dx + Q dy = 2\pi$ (as we will see in (11.25:1)). Now any Jordan curve C' in R either bounds a simply connected region or it cobounds a region with C or -C. (We are somewhat glossing over the difficulty that C, C' might intersect. But this problem can be easily rectified by choosing a third curve that cobounds with both C and C' and intersects neither of them.) In the first case, using Green's Theorem implies

$$\int_{C'} P \, dx + Q \, dy = \int \int_D \frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} = 0$$

where here $D \subset R$ and $\partial D = C'$.

In the second case, we use the observations outlined initially to determine

$$\int_{C'} P \, dx + Q \, dy = \pm \int_C P \, dx + Q \, dy = \pm A.$$

Thus there are 3 possible values for line integrals along piecewise smooth Jordan curves.

6. (11.25:1)

(a) First let B_r (boundary of disc D_r) be a circle around (0,0) with radius r. We can parameterize B_r by $\mathbf{s}(t) = (r \cos t, r \sin t)$. Then $P = r \sin t/r^2$ and $Q = -r \cos t/r^2$. So

$$\int_{B_r} P \, dx + Q \, dy = \int_0^{2\pi} (r \sin t/r^2) (-r \sin t) \, dt + (-r \cos t/r^2) (r \cos t) \, dt$$
$$= \int_0^{2\pi} \frac{-r^2}{r^2} \, dt = -2\pi$$

For any piecewise smooth Jordan curve C that bounds a region R that contains (0,0) we can choose r small enough so that the disc D_r of radius r lies inside C. Then $R - D_r$ is a region where $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ and these partial derivatives are well defined. Thus, as in the previous exercise we have that

$$\int_C P \, dx + Q \, dy = \pm \int_{B_r} P \, dx + Q \, dy = \pm 2\pi.$$

The sign depends on the orientation of C with respect to the orientation of B_r . The integral is positive if C is oriented clockwise and negative otherwise.

(b) If (0,0) is outside the region then in the whole region $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ (and these partial derivatives are everywhere well defined). Thus we can once more use Green's Theorem to see that $\int_C P \, dx + Q \, dy = 0$.

18.024 Multivariable Calculus with Theory Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.