PSET 9-DUE APRIL 21

1. $11.9: 8$ (4 points)
2. 11.15:2 (4 points)
3. 11.15:6 (4 points)
4. 11.15:13 (4 points)
5. 11.18:10 (6 points)
6. Let R, S be bounded subsets of the plane with corresponding density functions f_{R}, f_{S} respectively. Let $T=R \cup S$ and define f_{T} to be the appropriate density function on each component of T. Let $m(R), m(S)$ denote the respective masses of R, S. Prove

$$
\left(\bar{x}_{T}, \bar{y}_{T}\right)=\frac{\left(\bar{x}_{R} m(R)+\bar{x}_{S} m(S), \bar{y}_{R} m(R)+\bar{y}_{S} m(S)\right)}{m(R)+m(S)} .
$$

Here \bar{x}_{U} denotes the center of mass of the region U. (8 points)

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

