PSET 7 - DUE MARCH 31

1. 9.8:7 (6 points) Hint: It might help to define a scalar field $F(x, y, z)=f(u(x, y, z), v(x, y, z))$ where u, v are as needed.
2. Let $\mathbf{f}: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{m}$ be continuously differentiable and let $\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{m}$. Denote by $D \mathbf{f}=D \mathbf{f}^{x}+D \mathbf{f}^{y}$ the decomposition of the Jacobian such that for $\mathbf{h} \in \mathbb{R}^{n}, \mathbf{k} \in \mathbb{R}^{m}$, $D \mathbf{f}(\mathbf{x}, \mathbf{y})(\mathbf{h}, \mathbf{k})=D \mathbf{f}^{x}(\mathbf{x}, \mathbf{y}) \mathbf{h}+D \mathbf{f}^{y}(\mathbf{x}, \mathbf{y}) \mathbf{k}$. (That is $D \mathbf{f}^{x}(\mathbf{x}, \mathbf{y}): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $D \mathbf{f}^{y}(\mathbf{x}, \mathbf{y})$: $\mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ as mentioned in class.)
Suppose for $\mathbf{a} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}, \mathbf{f}(\mathbf{a}, \mathbf{b})=0$ and $\operatorname{det}\left(\operatorname{Df}^{y}(\mathbf{a}, \mathbf{b})\right) \neq 0$. We consider a few steps of the implicit function theorem in this setting. Let $F(\mathbf{x}, \mathbf{y}): \mathbb{R}^{m+n} \rightarrow \mathbb{R}^{m+n}$ such that $F(\mathbf{x}, \mathbf{y})=(\mathbf{x}, \mathbf{f}(\mathbf{x}, \mathbf{y}))$.

- Write down the matrix $D F$ as we described it in class. You may write it in block decomposition, but also explain how you produce each block! (2 points)
- Prove $D F$ is invertible at (\mathbf{a}, \mathbf{b}). (3 points)
- Using the inverse function theorem, we know there exists $(\mathbf{a}, \mathbf{b}) \in V$ open and $F(\mathbf{a}, \mathbf{b}) \in W$ open such that $F: V \rightarrow W$ is invertible with continuously differentiable inverse G. Let $U=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid(\mathbf{x}, \mathbf{0}) \in W\right\}$. Prove that U is open. (3 points)
- BONUS 1: Prove the existence of a well defined $\mathbf{g}: U \rightarrow \mathbb{R}^{m}$ such that $\mathbf{f}(\mathbf{x}, \mathbf{g}(\mathbf{x}))=$ $\mathbf{0}$ for all $\mathbf{x} \in U$ and show this \mathbf{g} is differentiable at \mathbf{a}. (6 points)
- BONUS 2: Prove the formula $D \mathbf{g}(\mathbf{a})=-D \mathbf{f}^{y}(\mathbf{a}, \mathbf{b})^{-1} D \mathbf{f}^{x}(\mathbf{a}, \mathbf{b})$. (3 points)

3. $9.13: 17$ - part (a) should be a sketch on the (x, y)-plane (8 points)
4. 9.15:8,13 (8 points)

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

