PSET 6 - DUE MARCH 17

1. 8.22: 14 (5 points)

- 2. 8.24: 12 (5 points)
- 3. Let $f(x,y) = \int_0^{xy} g(u) du$ where $g: \mathbb{R} \to \mathbb{R}$ is a strictly positive continuous function.
 - Find $\nabla f : \mathbb{R}^2 \to \mathbb{R}^2$ in terms of g.
 - Consider a level set $\{(x, y) \in \mathbb{R}^2 | f(x, y) = c\}$. Prove that for a fixed $c \neq 0$ there are exactly two level curves in the set. Moreover, prove they are precisely the graph of the function h(x) = b/x for exactly one $b \in \mathbb{R}$. (Do not try to determine b in terms of g! Just prove it exists and is unique!)
 - Parameterize one curve on a level set and prove that ∇f is orthogonal to the level set at each point on the curve.

1

(6 points)

4. Let
$$f : \mathbb{R}^2 \to \mathbb{R}$$
 by
(1) $f(x, y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$

• Prove $\frac{\partial f}{\partial x}(0,y) = -y$ for any y and $\frac{\partial f}{\partial y}(x,0) = x$ for any x.

• Prove
$$\frac{\partial^2 f}{\partial y \partial x} \neq \frac{\partial^2 f}{\partial x \partial y}$$
.

(6 points)

4. C20:5 (4 points)

5. C20:6 (4 points)

18.024 Multivariable Calculus with Theory Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.