PSET 6 - DUE MARCH 17

1. 8.22: 14 (5 points)
2. 8.24: 12 (5 points)
3. Let $f(x, y)=\int_{0}^{x y} g(u) d u$ where $g: \mathbb{R} \rightarrow \mathbb{R}$ is a strictly positive continuous function.

- Find $\nabla f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ in terms of g.
- Consider a level set $\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=c\right\}$. Prove that for a fixed $c \neq 0$ there are exactly two level curves in the set. Moreover, prove they are precisely the graph of the function $h(x)=b / x$ for exactly one $b \in \mathbb{R}$. (Do not try to determine b in terms of $g!$ Just prove it exists and is unique!)
- Parameterize one curve on a level set and prove that ∇f is orthogonal to the level set at each point on the curve.
(6 points)

4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \tag{1}\\ 0 & (x, y)=(0,0)\end{cases}
$$

- Prove $\frac{\partial f}{\partial x}(0, y)=-y$ for any y and $\frac{\partial f}{\partial y}(x, 0)=x$ for any x.
- Prove $\frac{\partial^{2} f}{\partial y \partial x} \neq \frac{\partial^{2} f}{\partial x \partial y}$.
(6 points)

4. C20:5 (4 points)
5. C20:6 (4 points)

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

