## PSET 4 - DUE MARCH 3

1. B.63:3. First prove that f(t) is continuous on [0, 1]. Then solve the stated problem.(6 pts)

- 2. 14.13:21 (5 pts)
- 3. 14.15:11 (5 pts)

4. Let  $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$  be continuous. Prove the inverse image of any open set is open. That is, let  $U \subset \mathbb{R}^m$  be open. Prove that  $\mathbf{f}^{-1}(U) = \{x \in \mathbb{R}^n | \mathbf{f}(x) \in U\}$  is open. (Using  $\epsilon, \delta$  arguments will be helpful.) (6 pts)

1

5. 8.5:2,4 (8 pts)

The problems from Chapter 14 refer to Apostol Volume I.

18.024 Multivariable Calculus with Theory Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.