PSET 3 - DUE FEBRUARY 24

Note the date change for this Pset! Due Thursday at 11:00 a.m., before class.

1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation and let P denote a paralellpiped in \mathbb{R}^{n} formed by the vectors $\left\{v_{1}, \cdots, v_{n}\right\}$. Let $m(T)$ denote the matrix of the transformation of T using the standard basis in \mathbb{R}^{n}. Finally, let $T(P)$ denote the image of the parallelpiped under the transformation T. Prove

$$
\operatorname{vol}(T(P))=|\operatorname{det}(m(T))| \operatorname{vol}(P) .
$$

(5 pts)
2. 14.4: 23 (5 pts)
3. Let P represent the plane containing the points $(1,0,0),(3,2,4),(1,-1,1)$. Find the point on the plane that minimizes the distance between the plane and the origin.
Remark: You should solve this problem without using an optimization technique (don't take any derivatives). You can justify this point minimizes distance using the geometry of vectors. (5 pts)
4. $14.9: 12$ (5 pts)
5. 14.9:15 (5 pts)
6. $14.13: 16$ (5 pts)

The problems from Chapter 14 refer to Apostol Volume I.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

