PSET 2 - DUE FEBRUARY 15

1. Let $T_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation that takes a vector x to its rotation (counterclockwise) by θ degrees about the origin.
a. Find the matrix representation for T_{θ} using the standard basis for $\mathbb{R}^{2}(\{(1,0),(0,1)\})$. (4 pts)
b. This matrix is obviously invertible. Find its inverse and verify by matrix multiplication. (2 pts)
2.Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ correspond to the transformations

$$
T(x, y, z)=(x, y) ; S(x, y, z)=(-x,-y,-z) .
$$

Notice that $T S$ is a well defined linear transformation. Find a matrix representation for S, T, and $T S$ using the basis $\{(1,0,0),(1,1,0),(1,1,1)\}$ for \mathbb{R}^{3} and the basis $\{(1,0),(1,-1)\}$ for \mathbb{R}^{2}. (6 pts)
3. $2.20: 9$ (4 pts)
4. For an $n \times n$ matrix A, we define $\lambda \in \mathbb{R}$ to be an eigenvalue of A if $A x=\lambda x$ for some $x \neq 0 \in \mathbb{R}^{n}$.
a. Prove that λ is an eigenvalue for A if and only if it solves $\operatorname{det}\left(A-\lambda I_{n}\right)=0$. (Here I_{n} represents the $n \times n$ identity matrix.) (6 pts)
b. For

$$
A=\left(\begin{array}{ccc}
4 & 1 & -2 \\
16 & -2 & -8 \\
4 & -2 & -2
\end{array}\right)
$$

determine the eigenvalues. (2 pts)
c. Use the results from part b to explain why A is not invertible. (2 pts)
5. Let X, Y be $n \times n$ matrices such that $X^{3}=Y^{3}$ and $X^{2} Y=Y^{2} X$. What are necessary and sufficient conditions on X and Y such that $X^{2}+Y^{2}$ is invertible? (4 pts)

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

