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MINIMAL SURFACES 

Definition 0.1. We say that S ⊂ R3 is a minimal surface if it is a critical point for 

area. 

We consider a particular class of minimal surfaces, minimal graphs, in what follows. 

Let u(x, y) be a graph of a surface S ⊂ R3 with Π(S) = R and u ∈ C2(R). We � � � 
know Area(S) = 1 + |�u|2dxdy. Now we determine what it means for S to

R 

be a critical point for area. Consider any v : R R such that v is continuously → 

differentiable and v = 0 on ∂R. Then the function ut = u + tv : R R and→ 

ut(∂R) = ∂S for all t. Denote St = ut(R). We say S is a critical point for area if 

d 
dt
|t=0Area(St) = 0. 

Thus S is a critical point for area iff 

d � 

dt
|t=0 

R 
1 + |�ut|2dxdy = 0. 

But notice that �ut = �u + t�v so |�ut|2 = |�u|2 + 2t��u, �v� + t2|�v|2 . So 

d � 
2 

��u, �v� + t|�v 2 

dt 
1 + |�ut| = � 

1 + |�ut 

| 
. 

|2 

Evaluating at t = 0 we get ���u, �v� 
.
 

1 + |�u|2
 

Now we can interchange the limit and the integral because v has continuous deriva 
 

tives on R and thus as t 0, �ut → �u uniformly on R. Thus S is a critical point
→ 

for area if and only if for all v ∈ C0
1(R), 

(1)	 ���u, �v� 
dxdy = 0. 

R 1 + |�u|2 

Now recall � � �	 � � 
(2) F nds = (∂F1/∂x + ∂F2/∂y)dydx = div(F )dxdy· 

∂R R	 R 
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2 MINIMAL SURFACES 

where n is the normal to the boundary of ∂R. Set F �u ; then 
∂R F nds = 0 = v √

1+|�u|2 
·

(since v ≡ 0 on the boundary). Now, we compute div(F ): 

div v � 
�u 

= vx � 
ux 

+ vy � 
uy 

+ v div � 
�u
 

1 + |�u|2 1 + |�u|2 1 + |�u|2 1 + |�u|2
 

or � � 

div(F ) = ���u, �v� 
+ div � 

�u
. 

1 + |�u|2 1 + |�u|2 

Using (1) and (2) we see for all v ∈ C0
1(R), 

0 = v div � 
�u 

dxdy. 
R 1 + |�u|2 

Theorem 0.2. Let u(x, y) be a graph of a surface S ⊂ R3 with Π(S) = R and 

u ∈ C2(S). Then S is a minimal surface if and only if 

div � 
�u 

= 0. 
1 + |�u 2 

� � 
Proof. Most of our work is already done. We know that 

R v div �u dxdy =√
1+|�u|2 

0 for all v ∈ C1 with v = 0 on the boundary of R. Now suppose there exists 

(x�, y�) ∈ R such that 

�u(x�, y�)
div � > 0. 

1 + |�u(x�, y�)|2 

Since u ∈ C2(R), it follows that there exists a neighborhood of (x�, y�), U ⊂ R, such 
�u(x,y)that div √

1+|�u(x,y)|2 
> 0 for all (x, y) ∈ U . Now choose v ∈ C1(R) such that 

v = 0 on R\U and v > 0 in U . But then � � � � � � � � 

v div � 
�u 

dxdy = v div � 
�u 

dxdy > 0 
R 1 + |�u|2 

U 1 + |�u|2 

which provides a contradiction. � 
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