MINIMAL SURFACES

Definition 0.1. We say that $S \subset \mathbb{R}^{3}$ is a minimal surface if it is a critical point for area.

We consider a particular class of minimal surfaces, minimal graphs, in what follows.
Let $u(x, y)$ be a graph of a surface $S \subset \mathbb{R}^{3}$ with $\Pi(S)=R$ and $u \in C^{2}(R)$. We know $\operatorname{Area}(S)=\iint_{R} \sqrt{1+|\nabla u|^{2}} d x d y$. Now we determine what it means for S to be a critical point for area. Consider any $v: R \rightarrow \mathbb{R}$ such that v is continuously differentiable and $v=0$ on ∂R. Then the function $u_{t}=u+t v: R \rightarrow \mathbb{R}$ and $u_{t}(\partial R)=\partial S$ for all t. Denote $S_{t}=u_{t}(R)$. We say S is a critical point for area if

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{Area}\left(S_{t}\right)=0 .
$$

Thus S is a critical point for area iff

$$
\left.\frac{d}{d t}\right|_{t=0} \iint_{R} \sqrt{1+\left|\nabla u_{t}\right|^{2}} d x d y=0
$$

But notice that $\nabla u_{t}=\nabla u+t \nabla v$ so $\left|\nabla u_{t}\right|^{2}=|\nabla u|^{2}+2 t\langle\nabla u, \nabla v\rangle+t^{2}|\nabla v|^{2}$. So

$$
\frac{d}{d t} \sqrt{1+\left|\nabla u_{t}\right|^{2}}=\frac{\langle\nabla u, \nabla v\rangle+t|\nabla v|^{2}}{\sqrt{1+\left|\nabla u_{t}\right|^{2}}}
$$

Evaluating at $t=0$ we get

$$
\frac{\langle\nabla u, \nabla v\rangle}{\sqrt{1+|\nabla u|^{2}}}
$$

Now we can interchange the limit and the integral because v has continuous derivatives on R and thus as $t \rightarrow 0, \nabla u_{t} \rightarrow \nabla u$ uniformly on R. Thus S is a critical point for area if and only if for all $v \in C_{0}^{1}(R)$,

$$
\begin{equation*}
\iint_{R} \frac{\langle\nabla u, \nabla v\rangle}{\sqrt{1+|\nabla u|^{2}}} d x d y=0 \tag{1}
\end{equation*}
$$

Now recall

$$
\begin{equation*}
\int_{\partial R} F \cdot n d s=\iint_{R}\left(\partial F_{1} / \partial x+\partial F_{2} / \partial y\right) d y d x=\iint_{R} \operatorname{div}(F) d x d y \tag{2}
\end{equation*}
$$

where n is the normal to the boundary of ∂R. Set $F=v \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}$; then $\int_{\partial R} F \cdot n d s=0$ (since $v \equiv 0$ on the boundary). Now, we compute $\operatorname{div}(F)$:

$$
\operatorname{div}\left(v \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=v_{x} \frac{u_{x}}{\sqrt{1+|\nabla u|^{2}}}+v_{y} \frac{u_{y}}{\sqrt{1+|\nabla u|^{2}}}+v \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)
$$

or

$$
\operatorname{div}(F)=\frac{\langle\nabla u, \nabla v\rangle}{\sqrt{1+|\nabla u|^{2}}}+\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)
$$

Using (1) and (2) we see for all $v \in C_{0}^{1}(R)$,

$$
0=\iint_{R} v \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) d x d y
$$

Theorem 0.2. Let $u(x, y)$ be a graph of a surface $S \subset \mathbb{R}^{3}$ with $\Pi(S)=R$ and $u \in C^{2}(S)$. Then S is a minimal surface if and only if

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0 .
$$

Proof. Most of our work is already done. We know that $\iint_{R} v \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) d x d y=$ 0 for all $v \in C^{1}$ with $v=0$ on the boundary of R. Now suppose there exists $\left(x^{\prime}, y^{\prime}\right) \in R$ such that

$$
\operatorname{div}\left(\frac{\nabla u\left(x^{\prime}, y^{\prime}\right)}{\sqrt{1+\left|\nabla u\left(x^{\prime}, y^{\prime}\right)\right|^{2}}}\right)>0
$$

Since $u \in C^{2}(R)$, it follows that there exists a neighborhood of $\left(x^{\prime}, y^{\prime}\right), U \subset R$, such that $\operatorname{div}\left(\frac{\nabla u(x, y)}{\sqrt{1+|\nabla u(x, y)|^{2}}}\right)>0$ for all $(x, y) \in U$. Now choose $v \in C^{1}(R)$ such that $v=0$ on $R \backslash U$ and $v>0$ in U. But then

$$
\iint_{R} v \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) d x d y=\iint_{U} v \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right) d x d y>0
$$

which provides a contradiction.

MIT OpenCourseWare
http://ocw.mit.edu

18.024 Multivariable Calculus with Theory

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

