5. Triple Integrals

5A. Triple integrals in rectangular and cylindrical coordinates

5A-1 Evaluate: a) $\int_{0}^{2} \int_{-1}^{1} \int_{0}^{1}(x+y+z) d x d y d z \quad$ b) $\int_{0}^{2} \int_{0}^{\sqrt{y}} \int_{0}^{x y} 2 x y^{2} z d z d x d y$
5A-2. Follow the three steps in the notes to supply limits for the triple integrals over the following regions of 3 -space.
a) The rectangular prism having as its two bases the triangle in the $y z$-plane cut out by the two axes and the line $y+z=1$, and the corresponding triangle in the plane $x=1$ obtained by adding 1 to the x-coordinate of each point in the first triangle. Supply limits for three different orders of integration:
(i) $\iiint d z d y d x$
(ii) $\iiint d x d z d y$
(iii) $\iiint d y d x d z$
b)* The tetrahedron having its four vertices at the origin, and the points on the three axes where respectively $x=1, y=2$, and $z=2$. Use the order $\iiint d z d y d x$.
c) The quarter of a solid circular cylinder of radius 1 and height 2 lying in the first octant, with its central axis the interval $0 \leq y \leq 2$ on the y-axis, and base the quarter circle in the $x z$-plane with center at the origin, radius 1 , and lying in the first quadrant. Integrate with respect to y first; use suitable cylindrical coordinates.
d) The region bounded below by the cone $z^{2}=x^{2}+y^{2}$, and above by the sphere of radius $\sqrt{2}$ and center at the origin. Use cylindrical coordinates.

5A-3 Find the center of mass of the tetrahedron D in the first octant formed by the coordinate planes and the plane $x+y+z=1$. Assume $\delta=1$.

5A-4 A solid right circular cone of height h with 90° vertex angle has density at point P numerically equal to the distance from P to the central axis. Choosing the placement of the cone which will give the easiest integral, find
a) its mass
b) its center of mass

5A-5 An engine part is a solid S in the shape of an Egyptian-type pyramid having height 2 and a square base with diagonal D of length 2 . Inside the engine it rotates about D. Set up (but do not evaluate) an iterated integral giving its moment of inertia about D. Assume $\delta=1$. (Place S so the positive z axis is its central axis.)

5A-6 Using cylindrical coordinates, find the moment of inertia of a solid hemisphere D of radius a about the central axis perpendicular to the base of D. Assume $\delta=1$..

5A-7 The paraboloid $z=x^{2}+y^{2}$ is shaped like a wine-glass, and the plane $z=2 x$ slices off a finite piece D of the region above the paraboloid (i.e., inside the wine-glass). Find the moment of inertia of D about the z-axis, assuming $\delta=1$.

5B. Triple Integrals in Spherical Coordinates

5B-1 Supply limits for iterated integrals in spherical coordinates $\iiint d \rho d \phi d \theta$ for each of the following regions. (No integrand is specified; $d \rho d \phi d \theta$ is given so as to determine the order of integration.)
a) The region of $5 \mathrm{~A}-2 \mathrm{~d}$: bounded below by the cone $z^{2}=x^{2}+y^{2}$, and above by the sphere of radius $\sqrt{2}$ and center at the origin.
b) The first octant.
c) That part of the sphere of radius 1 and center at $z=1$ on the z-axis which lies above the plane $z=1$.

5B-2 Find the center of mass of a hemisphere of radius a, using spherical coordinates. Assume the density $\delta=1$.

5B-3 A solid D is bounded below by a right circular cone whose generators have length a and make an angle $\pi / 6$ with the central axis. It is bounded above by a portion of the sphere of radius a centered at the vertex of the cone. Find its moment of inertia about its central axis, assuming the density δ at a point is numerically equal to the distance of the point from a plane through the vertex perpendicular to the central axis.

5B-4 Find the average distance of a point in a solid sphere of radius a from
a) the center
b) a fixed diameter
c) a fixed plane through the center

5C. Gravitational Attraction

5C-1.* Find the gravitational attraction of the solid V bounded by a right circular cone of vertex angle 60° and slant height a, surmounted by the cap of a sphere of radius a centered at the vertex of the cone; take the density to be
(a) 1
(b) the distance from the vertex.
Ans.: a) $\pi G a / 4$
b) $\pi G a^{2} / 8$

5C-2. Find the gravitational attraction of the region bounded above by the plane $z=2$ and below by the cone $z^{2}=4\left(x^{2}+y^{2}\right)$, on a unit mass at the origin; take $\delta=1$.

5C-3. Find the gravitational attraction of a solid sphere of radius 1 on a unit point mass Q on its surface, if the density of the sphere at $P(x, y, z)$ is $|P Q|^{-1 / 2}$.

5C-4. Find the gravitational attraction of the region which is bounded above by the sphere $x^{2}+y^{2}+z^{2}=1$ and below by the sphere $x^{2}+y^{2}+z^{2}=2 z$, on a unit mass at the origin. (Take $\delta=1$.)

5C-5.* Find the gravitational attraction of a solid hemisphere of radius a and density 1 on a unit point mass placed at its pole.

Ans: $2 \pi G a(1-\sqrt{2} / 3)$

5C-6.* Let V be a uniform solid sphere of mass M and radius a. Place a unit point mass a distance b from the center of V. Show that the gravitational attraction of V on the point mass is

$$
\text { a) } G M / b^{2}, \text { if } b \geq a ; \quad \text { b) } G M^{\prime} / b^{2}, \text { if } b \leq a, \text { where } M^{\prime}=\frac{b^{3}}{a^{3}} M
$$

Part (a) is Newton's theorem, described in the Remark. Part (b) says that the outer portion of the sphere-the spherical shell of inner radius b and outer radius a-exerts no force on the test mass: all of it comes from the inner sphere of radius b, which has total $\operatorname{mass} \frac{b^{3}}{a^{3}} M$.

5C-7.* Use Problem 6 b to show that if we dig a straight hole through the earth, it takes a point mass m a total of $\pi \sqrt{R / g} \approx 42$ minutes to fall from one end to the other, no matter what the length of the hole is.
(Write $\mathbf{F}=m \mathbf{a}$, letting x be the distance from the middle of the hole, and obtain an equation of simple harmonic motion for $x(t)$. Here

$$
\left.R=\text { earth's radius }, \quad M=\text { earth's mass, } \quad g=G M / R^{2} .\right)
$$

