5. Triple Integrals

5A. Triple integrals in rectangular and cylindrical coordinates
5A-1 a) $\quad \int_{0}^{2} \int_{-1}^{1} \int_{0}^{1}(x+y+z) d x d y d z \quad$ Inner: $\left.\frac{1}{2} x^{2}+x(y+z)\right]_{x=0}^{1}=\frac{1}{2}+y+z$
Middle: $\left.\frac{1}{2} y+\frac{1}{2} y^{2}+y z\right]_{y=-1}^{1}=1+z-(-z)=1+2 z \quad$ Outer: $\left.z+z^{2}\right]_{0}^{2}=6$
b) $\quad \int_{0}^{2} \int_{0}^{\sqrt{y}} \int_{0}^{x y} 2 x y^{2} z d z d x d y \quad$ Inner: $\left.x y^{2} z^{2}\right]_{0}^{x y}=x^{3} y^{4}$

$$
\text { Middle: } \left.\left.\frac{1}{4} x^{4} y^{4}\right]_{0}^{\sqrt{y}}=\frac{1}{4} y^{6} \quad \text { Outer: } \frac{1}{28} y^{7}\right]_{0}^{2}=\frac{32}{7}
$$

5A-2
a) (i) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1-y} d z d y d x$
(ii) $\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{1} d x d z d y$
(iii) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1-z} d y d x d z$

c) In cylindrical coordinates, with the polar coordinates r and θ in $x z$-plane, we get

$$
\iiint_{R} d y d r d \theta=\int_{0}^{\pi / 2} \int_{0}^{1} \int_{0}^{2} d y d r d \theta
$$

d) The sphere has equation $x^{2}+y^{2}+z^{2}=2$, or $r^{2}+z^{2}=2$ in cylindrical coordinates.

The cone has equation $z^{2}=r^{2}$, or $z=r$. The circle in which they intersect has a radius r found by solving the two equations $z=r$ and $z^{2}+r^{2}=2$ simultaneously; eliminating z we get $r^{2}=1$, so $r=1$. Putting it all together, we get

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{\sqrt{2-r^{2}}} r d z d r d \theta
$$

5A-3 By symmetry, $\bar{x}=\bar{y}=\bar{z}$, so it suffices to calculate just one of these, say \bar{z}. We have

$$
z \text {-moment }=\iiint_{D} z d V=\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} z d z d y d x
$$

Inner: $\left.\quad \frac{1}{2} z^{2}\right]_{0}^{1-x-y}=\frac{1}{2}(1-x-y)^{2} \quad$ Middle: $\left.-\frac{1}{6}(1-x-y)^{3}\right]_{0}^{1-x}=\frac{1}{6}(1-x)^{3}$ Outer: $\left.-\frac{1}{24}(1-x)^{4}\right]_{0}^{1}=\frac{1}{24}=\bar{z}$ moment.
mass of $D=$ volume of $D=\frac{1}{3}$ (base)(height) $=\frac{1}{3} \cdot \frac{1}{2} \cdot 1=\frac{1}{6}$.
Therefore $\bar{z}=\frac{1}{24} / \frac{1}{6}=\frac{1}{4}$; this is also \bar{x} and \bar{y}, by symmetry.
5A-4 Placing the cone as shown, its equation in cylindrical coordinates is $z=r$ and the density is given by $\delta=r$. By the geometry, its projection onto the $x y$-plane is the interior R of the origin-centered circle of radius h.

vertical cross-section
a) Mass of solid $D=\iiint_{D} \delta d V=\int_{0}^{2 \pi} \int_{0}^{h} \int_{r}^{h} r \cdot r d z d r d \theta$

Inner: $(h-r) r^{2} ; \quad$ Middle: $\left.\frac{h r^{3}}{3}-\frac{r^{4}}{4}\right]_{0}^{h}=\frac{h^{4}}{12} ; \quad$ Outer: $\quad \frac{2 \pi h^{4}}{12}$
b) By symmetry, the center of mass is on the z-axis, so we only have to compute its z-coordinate, \bar{z}.
z-moment of $D=\iiint_{D} z \delta d V=\int_{0}^{2 \pi} \int_{0}^{h} \int_{r}^{h} z r \cdot r d z d r d \theta$
Inner: $\left.\quad \frac{1}{2} z^{2} r^{2}\right]_{r}^{h}=\frac{1}{2}\left(h^{2} r^{2}-r^{4}\right) \quad$ Middle: $\frac{1}{2}\left(h^{2} \frac{r^{2}}{3}-\frac{r^{5}}{5}\right)_{0}^{h}=\frac{1}{2} h^{5} \cdot \frac{2}{15}$
Outer: $\frac{2 \pi h^{5}}{15}$. Therefore, $\bar{z}=\frac{\frac{2}{15} \pi h^{5}}{\frac{2}{12} \pi h^{4}}=\frac{4}{5} h$.
5A-5 Position S so that its base is in the $x y$-plane and its diagonal D lies along the x-axis (the y-axis would do equally well). The octants divide S into four tetrahedra, which by symmetry have the same moment of inertia about the x-axis; we calculate the one in the first octant. (The picture looks like that for $5 \mathrm{~A}-3$, except the height is 2.)

The top of the tetrahedron is a plane intersecting the x - and y-axes at 1 , and the z-axis at 2 . Its equation is therefore $x+y+\frac{1}{2} z=1$.

The square of the distance of a point (x, y, z) to the axis of rotation (i.e., the x-axis) is given by $y^{2}+z^{2}$. We therefore get:

$$
\text { moment of inertia }=4 \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2(1-x-y)}\left(y^{2}+z^{2}\right) d z d y d x
$$

5A-6 Placing D so its axis lies along the positive z-axis and its base is the origin-centered disc of radius a in the $x y$-plane, the equation of the hemisphere is $z=\sqrt{a^{2}-x^{2}-y^{2}}$, or $z=\sqrt{a^{2}-r^{2}}$ in cylindrical coordinates. Doing the inner and outer integrals mentally:
z-moment of inertia of $D=\iiint_{D} r^{2} d V=\int_{0}^{2 \pi} \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-r^{2}}} r^{2} d z r d r d \theta=2 \pi \int_{0}^{a} r^{3} \sqrt{a^{2}-r^{2}} d r$.
The integral can be done using integration by parts (write the integrand $r^{2} \cdot r \sqrt{a^{2}-r^{2}}$), or by substitution; following the latter course, we substitute $r=a \sin u, d r=a \cos u d u$, and get (using the formulas at the beginning of exercises 3B)

$$
\begin{aligned}
& \int_{0}^{a} r^{3} \sqrt{a^{2}-r^{2}} d r=\int_{0}^{\pi / 2} a^{3} \sin ^{3} u \cdot a^{2} \cos ^{2} u d u \\
&=a^{5} \int_{0}^{\pi / 2}\left(\sin ^{3} u-\sin ^{5} u\right) d u=a^{5}\left(\frac{2}{3}-\frac{2 \cdot 4}{1 \cdot 3 \cdot 5}\right)=\frac{2}{15} a^{5} . \quad \text { Ans: } \frac{4 \pi}{15} a^{5}
\end{aligned}
$$

5A-7 The solid D is bounded below by $z=x^{2}+y^{2}$ and above by $z=2 x$. The main problem is determining the projection R of D to the $x y$-plane, since we need to know this before we can put in the limits on the iterated integral.

The outline of R is the projection (i.e., vertical shadow) of the curve in which the paraboloid and plane intersect. This curve is made up of the points in which the graphs of $z=2 x$ and $z=x^{2}+y^{2}$ intersect, i.e., the simultaneous solutions of the two equations. To project the curve, we omit the z-coordinates of the points on it. Algebraically, this amounts to solving the equations simultaneously by eliminating z from the two equations; doing this, we get as the outline of R the curve

cross-section of D

view of D along x axis

$$
x^{2}+y^{2}=2 x \quad \text { or, completing the square, } \quad(x-1)^{2}+y^{2}=1
$$

This is a circle of radius 1 and center at $(1,0)$, whose polar equation is therefore $r=2 \cos \theta$.
We use symmetry to calculate just the right half of D and double the answer:
z-moment of inertia of $D=2 \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} \int_{x^{2}+y^{2}}^{2 x} r^{2} d z r d r d \theta$

$$
=2 \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} \int_{r^{2}}^{2 r \cos \theta} r^{3} d z d r d \theta=2 \int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{3}\left(2 r \cos \theta-r^{2}\right) d r d \theta
$$

Inner: $\left.\frac{2}{5} r^{5} \cos \theta-\frac{1}{6} r^{6}\right]_{0}^{2 \cos \theta}=\frac{2}{5} \cdot 32 \cos ^{6} \theta-\frac{1}{3} \cdot 32 \cos ^{6} \theta$
Outer: $\cdot \frac{32}{15} \int_{0}^{\pi / 2} \cos ^{6} \theta d \theta=\cdot \frac{32}{15} \cdot \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{\pi}{2}=\frac{\pi}{3} . \quad$ Ans: $\frac{2 \pi}{3}$

5B. Triple Integrals in spherical coordinates

5B-1 a) The angle between the central axis of the cone and any of the lines on the cone is $\pi / 4$; the sphere is $\rho=\sqrt{2}$; so the limits are (no integrand given):: $\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{\sqrt{2}} d \rho d \phi d \theta$.
b) The limits are (no integrand is given): $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{\infty} d \rho d \phi d \theta$
c) To get the equation of the sphere in spherical coordinates, we note that $A O P$ is always a right triangle, for any position of P on the sphere. Since $A O=2$ and $O P=\rho$, we get according to the definition of the cosine, $\cos \phi=\rho / 2$, or $\rho=2 \cos \phi$. (The picture shows the cross-section of the sphere by the plane containing P and the central axis $A O$.)

cross-section

The plane $z=1$ has in spherical coordinates the equation $\rho \cos \phi=1$, or $\rho=\sec \phi$. It intersects the sphere in a circle of radius 1 ; this shows that $\pi / 4$ is the maximum value of ϕ for which the ray having angle ϕ intersects the region.. Therefore the limits are (no integrand is given):

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{\sec \phi}^{2 \cos \phi} d \rho d \phi d \theta
$$

5B-2 Place the solid hemisphere D so that its central axis lies along the positive z-axis and its base is in the $x y$-plane. By symmetry, $\bar{x}=0$ and $\bar{y}=0$, so we only need \bar{z}. The integral for it is the product of three separate one-variable integrals, since the integrand is the product of three one-variable functions and the limits of integration are all constants.

$$
\begin{aligned}
\bar{z} \text {-moment }=\iiint_{D} z d V & =\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{a}(\rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =2 \pi \cdot\left(\frac{1}{4} \rho^{4}\right)_{0}^{a} \cdot\left(\frac{1}{2} \sin ^{2} \phi\right)_{0}^{\pi / 2}=2 \pi \cdot \frac{1}{4} a^{4} \cdot \frac{1}{2}=\frac{\pi a^{4}}{4} .
\end{aligned}
$$

Since the mass is $\frac{2}{3} \pi a^{3}$, we have finally $\bar{z}=\frac{\pi a^{4} / 4}{2 \pi a^{3} / 3}=\frac{3}{8} a$.
5B-3 Place the solid so the vertex is at the origin, and the central axis lies along the positive z-axis. In spherical coordinates, the density is given by $\delta=z=\rho \cos \phi$, and referring to the picture, we have

$$
\begin{aligned}
\text { M. of I. }=\iiint_{D} r^{2} \cdot z d V & =\iiint_{D}(\rho \sin \phi)^{2}(\rho \cos \phi) \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\pi / 6} \int_{0}^{a} \rho^{5} \sin ^{3} \phi \cos \phi d \rho d \phi d \theta \\
& \left.=2 \pi \cdot \frac{a^{6}}{6} \cdot \frac{1}{4} \sin ^{4} \phi\right]_{0}^{\pi / 6}=2 \pi \cdot \frac{a^{6}}{6} \cdot \frac{1}{4}\left(\frac{1}{2}\right)^{4}=\frac{\pi a^{6}}{2^{6} \cdot 3} .
\end{aligned}
$$

cross-section

5B-4 Place the sphere so its center is at the origin. In each case the iterated integral can be expressed as the product of three one-variable integrals (which are easily calculated), since the integrand is the product of one-variable functions and the limits are constants.
a) $\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} \rho \cdot \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi \cdot 2 \cdot \frac{1}{4} a^{4}=\pi a^{4} ; \quad$ average $=\frac{\pi a^{4}}{4 \pi a^{3} / 3}=\frac{3 a}{4}$.
b) Use the z-axis as diameter. The distance of a point from the z-axis is $r=\rho \sin \phi$.

$$
\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{a} \rho \sin \phi \cdot \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi \cdot \frac{\pi}{2} \cdot \frac{1}{4} a^{4}=\frac{\pi^{2} a^{4}}{4} ; \quad \text { average }=\frac{\pi^{2} a^{4} / 4}{4 \pi a^{3} / 3}=\frac{3 \pi a}{16}
$$

c) Use the $x y$-plane and the upper solid hemisphere. The distance is $z=\rho \cos \phi$.

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{a} \rho \cos \phi \cdot \rho^{2} \sin \phi d \rho d \phi d \theta=2 \pi \cdot \frac{1}{2} \cdot \frac{1}{4} a^{4}=\frac{\pi a^{4}}{4} ; \quad \text { average }=\frac{\pi a^{4} / 4}{2 \pi a^{3} / 3}=\frac{3 a}{8} .
$$

5C. Gravitational Attraction

5C-2 The top of the cone is given by $z=2$; in spherical coordinates: $\rho \cos \phi=2$. Let α be the angle between the axis of the cone and any of its generators. The density $\delta=1$. Since the cone is symmetric about its axis, the gravitational attraction has only a k-component, and is

$$
G \int_{0}^{2 \pi} \int_{0}^{\alpha} \int_{0}^{2 / \cos \phi} \sin \phi \cos \phi d \rho d \phi d \theta
$$

Inner: $\frac{2}{\cos \phi} \sin \phi \cos \phi \quad$ Middle: $\left.-2 \cos \phi\right]_{0}^{\alpha}=-2 \cos \alpha+2 \quad$ Outer: $2 \pi \cdot 2(1-\cos \alpha)$
Ans: $4 \pi G\left(1-\frac{2}{\sqrt{5}}\right)$.
5C-3 Place the sphere as shown so that Q is at the origin. Since it is rotationally symmetric about the z-axis, the force will be in the \mathbf{k}-direction.

Equation of sphere: $\rho=2 \cos \phi \quad$ Density: $\delta=\rho^{-1 / 2}$

$$
F_{z}=G \int_{0}^{2 \pi} \int_{0}^{\pi / 2} \int_{0}^{2 \cos \phi} \rho^{-1 / 2} \cos \phi \sin \phi d \rho d \phi d \theta
$$

Inner: $\left.\cos \phi \sin \phi 2 \rho^{1 / 2}\right]_{0}^{2 \cos \phi}=2 \sqrt{2} \cos ^{3 / 2} \phi \sin \phi$
Middle: $2 \sqrt{2}\left[-\frac{2}{5} \cos ^{5 / 2} \phi\right]_{0}^{\pi / 2}=\frac{4 \sqrt{2}}{5} \quad$ Outer: $2 \pi G \frac{4 \sqrt{2}}{5}=\frac{8 \sqrt{2}}{5} \pi G$.

5C-4 Referring to the figure, the total gravitational attraction (which is in the \mathbf{k} direction, by rotational symmetry) is the sum of the two integrals

$$
\begin{gathered}
G \int_{0}^{2 \pi} \int_{0}^{\pi / 3} \int_{0}^{1} \cos \phi \sin \phi d \rho d \phi d \theta+G \int_{0}^{2 \pi} \int_{\pi / 3}^{\pi / 2} \int_{0}^{2 \cos \phi} \cos \phi \sin \phi d \rho d \phi d \theta \\
\quad=2 \pi G \cdot \frac{1}{2}\left(\frac{\sqrt{3}}{2}\right)^{2}+2 \pi G \cdot \frac{2}{3}\left(\frac{1}{2}\right)^{3}=\frac{3}{4} \pi G+\frac{1}{6} \pi G=\frac{11}{12} \pi G
\end{gathered}
$$

The two spheres are shown in cross-section. The spheres intersect at the points where $\phi=\pi / 3$.

The first integral respresents the gravitational attraction of the top part of the solid, bounded below by the cone $\phi=\pi / 3$ and above by the sphere $\rho=1$.

The second integral represents the bottom part of the solid, bounded below by the sphere $\rho=2 \cos \phi$ and above by the cone.

