MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Lecture 21. - Tue, Oct 30, 2007

Test for gradient fields.
Observe: if $\vec{F}=M \hat{\imath}+N \hat{\jmath}$ is a gradient field then $N_{x}=M_{y}$. Indeed, if $\vec{F}=\nabla f$ then $M=f_{x}$, $N=f_{y}$, so $N_{x}=f_{y x}=f_{x y}=M_{y}$.

Claim: Conversely, if \vec{F} is defined and differentiable at every point of the plane, and $N_{x}=M_{y}$, then $\vec{F}=M \hat{\imath}+N \hat{\boldsymbol{\jmath}}$ is a gradient field.

Example: $\vec{F}=-y \hat{\imath}+x \hat{\boldsymbol{\jmath}}: \quad N_{x}=1, M_{y}=-1$, so \vec{F} is not a gradient field.
Example: for which value(s) of a is $\vec{F}=\left(4 x^{2}+a x y\right) \hat{\imath}+\left(3 y^{2}+4 x^{2}\right) \hat{\jmath}$ a gradient field? Answer: $N_{x}=8 x, M_{y}=a x$, so $a=8$.

Finding the potential: if above test says \vec{F} is a gradient field, we have 2 methods to find the potential function f. Illustrated for the above example (taking $a=8$):

Method 1: using line integrals (FTC backwards):
We know that if C starts at $(0,0)$ and ends at $\left(x_{1}, y_{1}\right)$ then $f\left(x_{1}, y_{1}\right)-f(0,0)=\int_{C} \vec{F} \cdot d \vec{r}$. Here $f(0,0)$ is just an integration constant (if f is a potential then so is $f+c$). Can also choose the simplest curve C from $(0,0)$ to $\left(x_{1}, y_{1}\right)$.

Simplest choice: take $C=$ portion of x-axis from $(0,0)$ to $\left(x_{1}, 0\right)$, then vertical segment from $\left(x_{1}, 0\right)$ to $\left(x_{1}, y_{1}\right)$ (picture drawn).

Then $\int_{C} \vec{F} \cdot d \vec{r}=\int_{C_{1}+C_{2}}\left(4 x^{2}+8 x y\right) d x+\left(3 y^{2}+4 x^{2}\right) d y$:
Over $C_{1}, 0 \leq x \leq x_{1}, y=0, d y=0: \int_{C_{1}}=\int_{0}^{x_{1}}\left(4 x^{2}+8 x \cdot 0\right) d x=\left[\frac{4}{3} x^{3}\right]_{0}^{x_{1}}=\frac{4}{3} x_{1}^{3}$.
Over $C_{2}, 0 \leq y \leq y_{1}, x=x_{1}, d x=0: \int_{C_{2}}=\int_{0}^{y_{1}}\left(3 y^{2}+4 x_{1}^{2}\right) d y=\left[y^{3}+4 x_{1}^{2} y\right]_{0}^{y_{1}}=y_{1}^{3}+4 x_{1}^{2} y_{1}$.
So $f\left(x_{1}, y_{1}\right)=\frac{4}{3} x_{1}^{3}+y_{1}^{3}+4 x_{1}^{2} y_{1}$ (+constant).
Method 2: using antiderivatives:
We want $f(x, y)$ such that (1) $f_{x}=4 x^{2}+8 x y$, (2) $f_{y}=3 y^{2}+4 x^{2}$.
Taking antiderivative of (1) w.r.t. x (treating y as a constant), we get $f(x, y)=\frac{4}{3} x^{3}+4 x^{2} y+$ integration constant (independent of x). The integration constant still depends on y, call it $g(y)$.

So $f(x, y)=\frac{4}{3} x^{3}+4 x^{2} y+g(y)$. Take partial w.r.t. y, to get $f_{y}=4 x^{2}+g^{\prime}(y)$.
Comparing this with (2), we get $g^{\prime}(y)=3 y^{2}$, so $g(y)=y^{3}+c$.
Plugging into above formula for f, we finally get $f(x, y)=\frac{4}{3} x^{3}+4 x^{2} y+y^{3}+c$.
Curl.
Now we have: $N_{x}=M_{y} \Leftrightarrow^{*} \vec{F}$ is a gradient field $\Leftrightarrow \vec{F}$ is conservative: $\oint_{C} \vec{F} \cdot d \vec{r}=0$ for any closed curve.
$\left(^{*}\right): \Rightarrow$ only holds if \vec{F} is defined everywhere, or in a "simply-connected" region - see next week.
Failure of conservativeness is given by the curl of \vec{F} :
Definition: $\operatorname{curl}(\vec{F})=N_{x}-M_{y}$.
Interpretation of curl: for a velocity field, curl $=$ (twice) angular velocity of the rotation component of the motion.
(Ex: $\vec{F}=\langle a, b\rangle$ uniform translation, $\vec{F}=\langle x, y\rangle$ expanding motion have curl zero; whereas $\vec{F}=\langle-y, x\rangle$ rotation at unit angular velocity has curl $=2$).
For a force field, curl $\vec{F}=$ torque exerted on a test mass, measures how \vec{F} imparts rotation motion.
For translation motion: $\frac{\text { Force }}{\text { Mass }}=$ acceleration $=\frac{d}{d t}$ (velocity).
For rotation effects: $\frac{\text { Torque }}{\text { Moment of inertia }}=$ angular acceleration $=\frac{d}{d t}$ (angular velocity).

18.02 Lecture 22. - Thu, Nov 1, 2007

Handouts: PS8 solutions, PS9, practice exams 3A and 3B.

Green's theorem.

If C is a positively oriented closed curve enclosing a region R, then

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{R} \operatorname{curl} \vec{F} d A \quad \text { which means } \quad \oint_{C} M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d A .
$$

Example (reduce a complicated line integral to an easy \iint):
Let $C=$ unit circle centered at $(2,0)$, counterclockwise. $R=$ unit disk at $(2,0)$. Then

$$
\oint_{C} y e^{-x} d x+\left(\frac{1}{2} x^{2}-e^{-x}\right) d y=\iint_{R} N_{x}-M_{y} d A=\iint_{R}\left(x+e^{-x}\right)-e^{-x} d A=\iint_{R} x d A .
$$

This is equal to area $\cdot \bar{x}=\pi \cdot 2=2 \pi$ (or by direct computation of the iterated integral). (Note: direct calculation of the line integral would probably involve setting $x=2+\cos \theta, y=\sin \theta$, but then calculations get really complicated.)

Application: proof of our criterion for gradient fields.
Theorem: if $\vec{F}=M \hat{\imath}+N \hat{\jmath}$ is defined and continuously differentiable in the whole plane, then $N_{x}=M_{y} \Rightarrow \vec{F}$ is conservative ($\Leftrightarrow \vec{F}$ is a gradient field).

If $N_{x}=M_{y}$ then by Green, $\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{R} \operatorname{curl} \vec{F} d A=\iint_{R} 0 d A=0$. So \vec{F} is conservative.
Note: this only works if \vec{F} and its curl are defined everywhere inside R. For the vector field on PS8 Problem 2, we can't do this if the region contains the origin - for example, the line integral along the unit circle is non-zero even though $\operatorname{curl}(\vec{F})$ is zero wherever it's defined.

Proof of Green's theorem. 2 preliminary remarks:

1) the theorem splits into two identities, $\oint_{C} M d x=-\iint_{R} M_{y} d A$ and $\oint_{C} N d y=\iint_{R} N_{x} d A$.
2) additivity: if theorem is true for R_{1} and R_{2} then it's true for the union $R=R_{1} \cup R_{2}$ (picture shown): $\oint_{C}=\oint_{C_{1}}+\oint_{C_{2}}$ (the line integrals along inner portions cancel out) and $\iint_{R}=\iint_{R_{1}}+\iint_{R_{2}}$.

Main step in the proof: prove $\oint_{C} M d x=-\iint_{R} M_{y} d A$ for "vertically simple" regions: $a<x<b$, $f_{0}(x)<y<f_{1}(x)$. (picture drawn). This involves calculations similar to PS5 Problem 3.

LHS: break C into four sides (C_{1} lower, C_{2} right vertical segment, C_{3} upper, C_{4} left vertical segment); $\int_{C_{2}} M d x=\int_{C_{4}} M d x=0$ since $x=$ constant on C_{2} and C_{4}. So

$$
\oint_{C}=\int_{C_{1}}+\int_{C_{3}}=\int_{a}^{b} M\left(x, f_{0}(x)\right) d x-\int_{a}^{b} M\left(x, f_{1}(x)\right) d x
$$

(using along C_{1} : parameter $a \leq x \leq b, y=f_{0}(x)$; along C_{2}, x from b to a, hence $-\operatorname{sign} ; y=f_{1}(x)$).

RHS: $-\iint_{R} M_{y} d A=-\int_{a}^{b} \int_{f_{0}(x)}^{f_{1}(x)} M_{y} d y d x=-\int_{a}^{b}\left(M\left(x, f_{1}(x)\right)-M\left(x, f_{0}(x)\right) d x\right.$ (= LHS).
Finally observe: any region R can be subdivided into vertically simple pieces (picture shown); for each piece $\oint_{C_{i}} M d x=-\iint_{R_{i}} M_{y} d A$, so by additivity $\oint_{C} M d x=-\iint_{R} M_{y} d A$.

Similarly $\oint_{C} N d y=\iint_{R} N_{x} d A$ by subdividing into horizontally simple pieces. This completes the proof.

Example. The area of a region R can be evaluated using a line integral: for example, $\oint_{C} x d y=$ $\iint_{R} 1 d A=\operatorname{area}(R)$.

This idea was used to build mechanical devices that measure area of arbitrary regions on a piece of paper: planimeters (photo of the actual object shown, and principle explained briefly: as one moves its arm along a closed curve, the planimeter calculates the line integral of a suitable vector field by means of an ingenious mechanism; at the end of the motion, one reads the area).

18.02 Lecture 23. - Fri, Nov 2, 2007

Flux. The flux of a vector field \vec{F} across a plane curve C is $\int_{C} \vec{F} \cdot \hat{\boldsymbol{n}} d s$, where $\hat{\boldsymbol{n}}=$ normal vector to C, rotated 90° clockwise from $\hat{\boldsymbol{T}}$.

We now have two types of line integrals: work, $\int \vec{F} \cdot \hat{\boldsymbol{T}} d s$, sums $\vec{F} \cdot \hat{\boldsymbol{T}}=$ component of \vec{F} in direction of C, along the curve C. Flux, $\int \vec{F} \cdot \hat{\boldsymbol{n}} d s$, sums $\vec{F} \cdot \hat{\boldsymbol{n}}=$ component of \vec{F} perpendicular to C, along the curve.

If we break C into small pieces of length Δs, the flux is $\sum_{i}(\vec{F} \cdot \hat{\boldsymbol{n}}) \Delta s_{i}$.
Physical interpretation: if \vec{F} is a velocity field (e.g. flow of a fluid), flux measures how much matter passes through C per unit time.

Look at a small portion of C : locally \vec{F} is constant, what passes through portion of C in unit time is contents of a parallelogram with sides Δs and \vec{F} (picture shown with \vec{F} horizontal, and portion of curve $=$ diagonal line segment). The area of this parallelogram is $\Delta s \cdot$ height $=\Delta s(\vec{F} \cdot \hat{n})$. (picture shown rotated with portion of C horizontal, at base of parallelogram). Summing these contributions along all of C, we get that $\int(\vec{F} \cdot \hat{\boldsymbol{n}}) d s$ is the total flow through C per unit time; counting positively what flows towards the right of C, negatively what flows towards the left of C, as seen from the point of view of a point travelling along C.

Example: $C=$ circle of radius a counterclockwise, $\vec{F}=x \hat{\boldsymbol{\imath}}+y \hat{\boldsymbol{\jmath}}$ (picture shown): along C, $\vec{F} / \mid \hat{\boldsymbol{n}}$, and $|\vec{F}|=a$, so $\vec{F} \cdot \hat{\boldsymbol{n}}=a$. So

$$
\int_{C} \vec{F} \cdot \hat{\boldsymbol{n}} d s=\int_{C} a d s=a \operatorname{length}(C)=2 \pi a^{2}
$$

Meanwhile, the flux of $-y \hat{\imath}+x \hat{\boldsymbol{\jmath}}$ across C is zero (field tangent to C).
That was a geometric argument. What about the general situation when calculation of the line integral is required?

Observe: $d \vec{r}=\hat{\boldsymbol{T}} d s=\langle d x, d y\rangle$, and $\hat{\boldsymbol{n}}$ is $\hat{\boldsymbol{T}}$ rotated 90° clockwise; so $\hat{\boldsymbol{n}} d s=\langle d y,-d x\rangle$.
So, if $\vec{F}=P \hat{\imath}+Q \hat{\jmath}$ (using new letters to make things look different; of course we could call the components M and N), then

$$
\int_{C} \vec{F} \cdot \hat{\boldsymbol{n}} d s=\int_{C}\langle P, Q\rangle \cdot\langle d y,-d x\rangle=\int_{C}-Q d x+P d y .
$$

(or if $\vec{F}=\langle M, N\rangle, \int_{C}-N d x+M d y$).
So we can compute flux using the usual method, by expressing $x, y, d x, d y$ in terms of a parameter variable and substituting (no example given).

Green's theorem for flux. If C encloses R counterclockwise, and $\vec{F}=P \hat{\boldsymbol{\imath}}+Q \hat{\jmath}$, then

$$
\oint_{C} \vec{F} \cdot \hat{\boldsymbol{n}} d s=\iint_{R} \operatorname{div}(\vec{F}) d A, \quad \text { where } \quad \operatorname{div}(\vec{F})=P_{x}+Q_{y} \quad \text { is the divergence of } \vec{F} .
$$

Note: the counterclockwise orientation of C means that we count flux of \vec{F} out of R through C.
Proof: $\oint_{C} \vec{F} \cdot \hat{\boldsymbol{n}} d s=\oint_{C}-Q d x+P d y$. Call $M=-Q$ and $N=P$, then apply usual Green's theorem $\oint_{C}^{C} M d x+N d y=\iint_{R}\left(N_{x}-M_{y}\right) d A$ to get

$$
\oint_{C}-Q d x+P d y=\iint_{R}\left(P_{x}-\left(-Q_{y}\right)\right) d A=\iint_{R} \operatorname{div}(\vec{F}) d A .
$$

This proof by "renaming" the components is why we called the components P, Q instead of M, N. If we call $\vec{F}=\langle M, N\rangle$ the statement becomes $\oint_{C}-N d x+M d y=\iint_{R}\left(M_{x}+N_{y}\right) d A$.

Example: in the above example ($x \hat{\imath}+y \hat{\boldsymbol{\jmath}}$ across circle), $\operatorname{div} \vec{F}=2$, so flux $=\iint_{R} 2 d A=$ 2 area $(R)=2 \pi a^{2}$. If we translate C to a different position (not centered at origin) (picture shown) then direct calculation of flux is harder, but total flux is still $2 \pi a^{2}$.

Physical interpretation: in an incompressible fluid flow, divergence measures source/sink density/rate, i.e. how much fluid is being added to the system per unit area and per unit time.

