MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Lecture 16. - Thu, Oct 18, 2007

Handouts: PS6 solutions, PS7.

Double integrals.

Recall integral in 1-variable calculus: $\int_{a}^{b} f(x) d x=$ area below graph $y=f(x)$ over $[a, b]$.
Now: double integral $\iint_{R} f(x, y) d A=$ volume below graph $z=f(x, y)$ over plane region R.
Cut R into small pieces $\Delta A \Rightarrow$ the volume is approximately $\sum f\left(x_{i}, y_{i}\right) \Delta A_{i}$. Limit as $\Delta A \rightarrow 0$ gives $\iint_{R} f(x, y) d A$. (picture shown)

How to compute the integral? By taking slices: $S(x)=$ area of the slice by a plane parallel to $y z$-plane (picture shown): then

$$
\text { volume }=\int_{x_{\min }}^{x_{\max }} S(x) d x, \quad \text { and for given } x, S(x)=\int f(x, y) d y
$$

In the inner integral, x is a fixed parameter, y is the integration variable. We get an iterated integral.

Example 1: $z=1-x^{2}-y^{2}$, region $0 \leq x \leq 1,0 \leq y \leq 1$ (picture shown):

$$
\int_{0}^{1} \int_{0}^{1}\left(1-x^{2}-y^{2}\right) d y d x
$$

(note: $d A=d y d x$, limit of $\Delta A=\Delta y \Delta x$ for small rectangles).
How to evaluate:

1) inner integral (x is constant): $\int_{0}^{1}\left(1-x^{2}-y^{2}\right) d y=\left[\left(1-x^{2}\right) y-\frac{1}{3} y^{3}\right]_{0}^{1}=\left(1-x^{2}\right)-\frac{1}{3}=\frac{2}{3}-x^{2}$.
2) outer integral: $\int_{0}^{1}\left(\frac{2}{3}-x^{2}\right) d x=\left[\frac{2}{3} x-\frac{1}{3} x^{3}\right]_{0}^{1}=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}$.

Example 2: same function over the quarter disc $R: x^{2}+y^{2}<1$ in the first quadrant.
How to find the bounds of integration? Fix x constant: what is a slice parallel to y-axis? bounds for $y=$ from $y=0$ to $y=\sqrt{ } 1-x^{2}$ in the inner integral. For the outer integral: first slice is $x=0$, last slice is $x=1$. So we get:

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}}\left(1-x^{2}-y^{2}\right) d y d x .
$$

(note the inner bounds depend on the outer variable x; the outer bounds are constants!)
Inner: $\left[\left(1-x^{2}\right) y-y^{3} / 3\right]_{0}^{\sqrt{1-x^{2}}}=\frac{2}{3}\left(1-x^{2}\right)^{3 / 2}$.
Outer: $\int_{0}^{1} \frac{2}{3}\left(1-x^{2}\right)^{3 / 2} d x=\cdots=\frac{\pi}{8}$.
$\left(\ldots=\right.$ trig. substitution $x=\sin \theta, d x=\cos \theta d \theta,\left(1-x^{2}\right)^{3 / 2}=\cos ^{3} \theta$. Then use double angle formulas... complicated! I carried out part of the calculation to show how it would be done but then stopped before the end to save time; students may be confused about what happened exactly.)

Exchanging order of integration.

$\int_{0}^{1} \int_{0}^{2} d x d y=\int_{0}^{2} \int_{0}^{1} d y d x$, since region is a rectangle (shown). In general, more complicated!

Example 3: $\int_{0}^{1} \int_{x}^{\sqrt{x}} \frac{e^{y}}{y} d y d x$: inner integral has no formula. To exchange order:

1) draw the region (here: $x<y<\sqrt{x}$ for $0 \leq x \leq 1$ - picture drawn on blackboard).
2) figure out bounds in other direction: fixing a value of y, what are the bounds for x ? here: left border is $x=y^{2}$, right is $x=y$; first slice is $y=0$, last slice is $y=1$, so we get

$$
\int_{0}^{1} \int_{y^{2}}^{y} \frac{e^{y}}{y} d x d y=\int_{0}^{1} \frac{e^{y}}{y}\left(y-y^{2}\right) d y=\int_{0}^{1} e^{y}-y e^{y} d y=\left[-y e^{y}+2 e^{y}\right]_{0}^{1}=e-2
$$

(the last integration can be done either by parts, or by starting from the guess $-y e^{y}$ and adjusting;).

18.02 Lecture 17. - Fri, Oct 19, 2007

Integration in polar coordinates. $(x=r \cos \theta, y=r \sin \theta)$: useful if either integrand or region have a simpler expression in polar coordinates.

Area element: $\Delta A \simeq(r \Delta \theta) \Delta r$ (picture drawn of a small element with sides Δr and $r \Delta \theta$). Taking $\Delta \theta, \Delta r \rightarrow 0$, we get $d A=r d r d \theta$.

Example (same as last time): $\iint_{x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0}\left(1-x^{2}-y^{2}\right) d x d y=\int_{0}^{\pi / 2} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta$.
Inner: $\left[\frac{1}{2} r^{2}-\frac{1}{4} r^{4}\right]_{0}^{1}=\frac{1}{4}$. Outer: $\int_{0}^{\pi / 2} \frac{1}{4} d \theta=\frac{\pi}{2} \frac{1}{4}=\frac{\pi}{8}$.
In general: when setting up $\iint f r d r d \theta$, find bounds as usual: given a fixed θ, find initial and final values of r (sweep region by rays).

Applications.

1) The area of the region R is $\iint_{R} 1 d A$. Also, the total mass of a planar object with density $\delta=\lim _{\Delta A=0} \Delta m / \Delta A$ (mass per unit area, $\delta=\delta(x, y)$ - if uniform material, constant) is given by:

$$
M=\iint_{R} \delta d A .
$$

2) recall the average value of f over R is $\bar{f}=\frac{1}{\text { Area }} \iint_{R} f d A$. The center of mass, or centroid, of a plate with density δ is given by weighted average

$$
\bar{x}=\frac{1}{\text { mass }} \iint_{R} x \delta d A, \quad \bar{y}=\frac{1}{\text { mass }} \iint_{R} y \delta d A
$$

3) moment of inertia: physical equivalent of mass for rotational motion. (mass $=$ how hard it is to impart translation motion; moment of inertia about some axis $=$ same for rotation motion around that axis)

Idea: kinetic energy for a single mass m at distance r rotating at angular speed $\omega=d \theta$ /dt (so velocity $v=r \omega$) is $\frac{1}{2} m v^{2}=\frac{1}{2} m r^{2} \omega^{2} ; I_{0}=m r^{2}$ is the moment of inertia.

For a solid with density $\delta, I_{0}=\iint_{R} r^{2} \delta d A$ (moment of inertia / origin). (the rotational energy is $\left.\frac{1}{2} I_{0} \omega^{2}\right)$.

Moment of inertia about an axis: $I=\iint_{R}(\text { distance to axis })^{2} \delta d A$. E.g. about x-axis, distance is $|y|$, so

$$
I_{x}=\iint_{R} y^{2} \delta d A
$$

Examples: 1) disk of radius a around its center $(\delta=1)$:

$$
I_{0}=\int_{0}^{2 \pi} \int_{0}^{a} r^{2} r d r d \theta=2 \pi\left[\frac{r^{4}}{4}\right]_{0}^{a}=\frac{\pi a^{4}}{2}
$$

2) same disk, about a point on the circumference?

Setup: place origin at point so integrand is easier; diameter along x-axis; then polar equation of circle is $r=2 a \cos \theta$ (explained on a picture). Thus

$$
I_{0}=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{2 a \cos \theta} r^{2} r d r d \theta=\ldots=\frac{3}{2} \pi a^{4}
$$

