MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

18.02 Lecture 14. – Thu, Oct 11, 2007

Handouts: PS5 solutions, PS6, practice exams 2A and 2B.

Non-independent variables.

Often we have to deal with non-independent variables, e.g. f(P, V, T) where PV = nRT.

Question: if g(x, y, z) = c then can think of z = z(x, y). What are $\partial z / \partial x$, $\partial z / \partial y$?

Example: $x^2 + yz + z^3 = 8$ at (2,3,1). Take differential: $2x dx + z dy + (y + 3z^2) dz = 0$, i.e. 4 dx + dy + 6 dz = 0 (constraint g = c), or $dz = -\frac{4}{6} dx - \frac{1}{6} dy$. So $\partial z/\partial x = -4/6 = -2/3$ and $\partial z/\partial y = -1/6$ (taking the coefficients of dx and dy). Or equivalently: if y is held constant then we substitute dy = 0 to get dz = -4/6 dx, so $\partial z/\partial x = -4/6 = -2/3$.

In general: $g(x, y, z) = c \Rightarrow g_x dx + g_y dy + g_z dz = 0$. If y held fixed, get $g_x dx + g_z dz = 0$, i.e. $dz = -g_x/g_z dx$, and $\partial z/\partial x = -g_x/g_z$.

Warning: notation can be dangerous! For example:

 $f(x,y) = x + y, \partial f/\partial x = 1$. Change of variables x = u, y = u + v then $f = 2u + v, \partial f/\partial u = 2$. x = u but $\partial f/\partial x \neq \partial f/\partial u$!!

This is because $\partial f/\partial x$ means change x keeping y fixed, while $\partial f/\partial u$ means change u keeping v fixed, i.e. change x keeping y - x fixed.

When there's ambiguity, we must precise what is held fixed: $\left(\frac{\partial f}{\partial x}\right)_y = \text{deriv.} / x \text{ with } y \text{ held}$

fixed, $\left(\frac{\partial f}{\partial u}\right)_v = \text{deriv.} / u$ with v held fixed. We now have $\left(\frac{\partial f}{\partial u}\right)_v = \left(\frac{\partial f}{\partial x}\right)_v \neq \left(\frac{\partial f}{\partial x}\right)_v$.

In above example, we computed $(\partial z/\partial x)_y$. When there is no risk of confusion we keep the old notation, by default $\partial/\partial x$ means we keep y fixed.

Example: area of a triangle with 2 sides a and b making an angle θ is $A = \frac{1}{2}ab\sin\theta$. Suppose it's a right triangle with b the hypothenuse, then constraint $a = b\cos\theta$.

3 ways in which rate of change of A w.r.t. θ makes sense:

1) view $A = A(a, b, \theta)$ independent variables, usual $\frac{\partial A}{\partial \theta} = A_{\theta}$ (with a and b held fixed). This answers the question: a and b fixed, θ changes, triangle stops being a right triangle, what happens to A?

2) constraint $a = b \cos \theta$, keep a fixed, change θ , while b does what it must to satisfy the constraint: $\left(\frac{\partial A}{\partial \theta}\right)_a$.

3) constraint $a = b \cos \theta$, keep b fixed, change θ , while a does what it must to satisfy the constraint: $\left(\frac{\partial A}{\partial \theta}\right)_{t}$.

How to compute e.g. $(\partial A/\partial \theta)_a$? [treat A as function of a and θ , while $b = b(a, \theta)$.]

0) Substitution: $a = b \cos \theta$ so $b = a \sec \theta$, $A = \frac{1}{2}ab \sin \theta = \frac{1}{2}a^2 \tan \theta$, $(\frac{\partial A}{\partial \theta})_a = \frac{1}{2}a^2 \sec^2 \theta$. (Easiest here, but it's not always possible to solve for b)

1) Total differentials: da = 0 (a fixed), $dA = A_{\theta}d\theta + A_a da + A_b db = \frac{1}{2}ab\cos\theta \,d\theta + \frac{1}{2}b\sin\theta \,da + \frac{1}{2}a\sin\theta \,db$, and constraint $\Rightarrow da = \cos\theta \,db - b\sin\theta \,d\theta$. Plugging in da = 0, we get $db = b\tan\theta \,d\theta$

and then

$$dA = \left(\frac{1}{2}ab\cos\theta + \frac{1}{2}a\sin\theta b\tan\theta\right)d\theta, \quad \left(\frac{\partial A}{\partial \theta}\right)_a = \frac{1}{2}ab\cos\theta + \frac{1}{2}a\sin\theta b\tan\theta = \frac{1}{2}ab\sec\theta.$$

2) Chain rule: $(\partial A/\partial \theta)_a = A_{\theta}(\partial \theta/\partial \theta)_a + A_a(\partial a/\partial \theta)_a + A_b(\partial b/\partial \theta)_b = A_{\theta} + A_b(\partial b/\partial \theta)_a$. We find $(\partial b/\partial \theta)_a$ by using the constraint equation. [Ran out of time here]. Implicit differentiation of constraint $a = b \cos \theta$: we have $0 = (\partial a/\partial \theta)_a = (\partial b/\partial \theta)_a \cos \theta - b \sin \theta$, so $(\partial b/\partial \theta)_a = b \tan \theta$, and hence

$$\left(\frac{\partial A}{\partial \theta}\right)_a = \frac{1}{2}ab\cos\theta + \frac{1}{2}a\sin\theta b\tan\theta = \frac{1}{2}ab\sec\theta.$$

The two systematic methods essentially involve calculating the same quantities, even though things are written differently.

18.02 Lecture 15. - Fri, Oct 12, 2007

Review topics.

– Functions of several variables, contour plots.

– Partial derivatives, gradient; approximation formulas, tangent planes, directional derivatives.

Note: partial differential equations (= equations involving partial derivatives of an unknown function) are very important in physics. E.g., heat equation: $\partial f/\partial t = k(\partial^2 f/\partial x^2 + \partial^2 f/\partial y^2 + \partial^2 f/\partial z^2)$ describes evolution of temperature over time.

- Min/max problems: critical points, 2nd derivative test, checking boundary. (least squares won't be on the exam)

- Differentials, chain rule, change of variables.

- Non-independent variables: Lagrange multipliers, and constrained partial derivatives.

Re-explanation of how to compute constrained partials: say f = f(x, y, z) where g(x, y, z) = c. To find $(\partial f / \partial z)_y$:

1) using differentials: $df = f_x dx + f_y dy + f_z dz$. We set dy = 0 since y held constant, and want to eliminate dx. For this we use the constraint: $dg = g_x dx + g_y dy + g_z dz = 0$, so setting dy = 0 we get $dx = -g_z/g_x dz$. Plug into df: $df = -f_x g_z/g_x dz + g_z dz$, so $(\partial f/\partial z)_y = -f_x g_z/g_x + g_z$.

2) using chain rule:
$$\left(\frac{\partial f}{\partial z}\right)_y = \frac{\partial f}{\partial x} \left(\frac{\partial x}{\partial z}\right)_y + \frac{\partial f}{\partial y} \left(\frac{\partial y}{\partial z}\right)_y + \frac{\partial f}{\partial z} \left(\frac{\partial z}{\partial z}\right)_y = f_x \left(\frac{\partial x}{\partial z}\right)_y + f_z$$
, while

$$0 = \left(\frac{\partial g}{\partial z}\right)_y = \frac{\partial g}{\partial x} \left(\frac{\partial x}{\partial z}\right)_y + \frac{\partial g}{\partial y} \left(\frac{\partial y}{\partial z}\right)_y + \frac{\partial g}{\partial z} \left(\frac{\partial z}{\partial z}\right)_y = g_x \left(\frac{\partial x}{\partial z}\right)_y + g_z$$

which gives $(\partial x/\partial z)_y$ and hence the answer.

 $\mathbf{2}$