MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Lecture 14. - Thu, Oct 11, 2007

Handouts: PS5 solutions, PS6, practice exams 2A and 2B.
Non-independent variables.
Often we have to deal with non-independent variables, e.g. $f(P, V, T)$ where $P V=n R T$.
Question: if $g(x, y, z)=c$ then can think of $z=z(x, y)$. What are $\partial z / \partial x, \partial z / \partial y$?
Example: $x^{2}+y z+z^{3}=8$ at $(2,3,1)$. Take differential: $2 x d x+z d y+\left(y+3 z^{2}\right) d z=0$, i.e. $4 d x+d y+6 d z=0($ constraint $g=c)$, or $d z=-\frac{4}{6} d x-\frac{1}{6} d y$. So $\partial z / \partial x=-4 / 6=-2 / 3$ and $\partial z / \partial y=-1 / 6$ (taking the coefficients of $d x$ and $d y$). Or equivalently: if y is held constant then we substitute $d y=0$ to get $d z=-4 / 6 d x$, so $\partial z / \partial x=-4 / 6=-2 / 3$.

In general: $g(x, y, z)=c \Rightarrow g_{x} d x+g_{y} d y+g_{z} d z=0$. If y held fixed, get $g_{x} d x+g_{z} d z=0$, i.e. $d z=-g_{x} / g_{z} d x$, and $\partial z / \partial x=-g_{x} / g_{z}$.

Warning: notation can be dangerous! For example:
$f(x, y)=x+y, \partial f / \partial x=1$. Change of variables $x=u, y=u+v$ then $f=2 u+v, \partial f / \partial u=2$.
$x=u$ but $\partial f / \partial x \neq \partial f / \partial u!!$
This is because $\partial f / \partial x$ means change x keeping y fixed, while $\partial f / \partial u$ means change u keeping v fixed, i.e. change x keeping $y-x$ fixed.

When there's ambiguity, we must precise what is held fixed: $\left(\frac{\partial f}{\partial x}\right)_{y}=$ deriv. / x with y held fixed, $\left(\frac{\partial f}{\partial u}\right)_{v}=$ deriv. $/ u$ with v held fixed.

We now have $\left(\frac{\partial f}{\partial u}\right)_{v}=\left(\frac{\partial f}{\partial x}\right)_{v} \neq\left(\frac{\partial f}{\partial x}\right)_{y}$.
In above example, we computed $(\partial z / \partial x)_{y}$. When there is no risk of confusion we keep the old notation, by default $\partial / \partial x$ means we keep y fixed.

Example: area of a triangle with 2 sides a and b making an angle θ is $A=\frac{1}{2} a b \sin \theta$. Suppose it's a right triangle with b the hypothenuse, then constraint $a=b \cos \theta$.

3 ways in which rate of change of A w.r.t. θ makes sense:

1) view $A=A(a, b, \theta)$ independent variables, usual $\frac{\partial A}{\partial \theta}=A_{\theta}$ (with a and b held fixed). This answers the question: a and b fixed, θ changes, triangle stops being a right triangle, what happens to A ?
2) constraint $a=b \cos \theta$, keep a fixed, change θ, while b does what it must to satisfy the constraint: $\left(\frac{\partial A}{\partial \theta}\right)_{a}$.
3) constraint $a=b \cos \theta$, keep b fixed, change θ, while a does what it must to satisfy the constraint: $\left(\frac{\partial A}{\partial \theta}\right)_{b}$.

How to compute e.g. $(\partial A / \partial \theta)_{a}$? [treat A as function of a and θ, while $b=b(a, \theta)$.]
0) Substitution: $a=b \cos \theta$ so $b=a \sec \theta, A=\frac{1}{2} a b \sin \theta=\frac{1}{2} a^{2} \tan \theta,\left(\frac{\partial A}{\partial \theta}\right)_{a}=\frac{1}{2} a^{2} \sec ^{2} \theta$. (Easiest here, but it's not always possible to solve for b)

1) Total differentials: $d a=0$ (a fixed), $d A=A_{\theta} d \theta+A_{a} d a+A_{b} d b=\frac{1}{2} a b \cos \theta d \theta+\frac{1}{2} b \sin \theta d a+$ $\frac{1}{2} a \sin \theta d b$, and constraint $\Rightarrow d a=\cos \theta d b-b \sin \theta d \theta$. Plugging in $d a=0$, we get $d b=b \tan \theta d \theta$
and then

$$
d A=\left(\frac{1}{2} a b \cos \theta+\frac{1}{2} a \sin \theta b \tan \theta\right) d \theta, \quad\left(\frac{\partial A}{\partial \theta}\right)_{a}=\frac{1}{2} a b \cos \theta+\frac{1}{2} a \sin \theta b \tan \theta=\frac{1}{2} a b \sec \theta .
$$

2) Chain rule: $(\partial A / \partial \theta)_{a}=A_{\theta}(\partial \theta / \partial \theta)_{a}+A_{a}(\partial a / \partial \theta)_{a}+A_{b}(\partial b / \partial \theta)_{b}=A_{\theta}+A_{b}(\partial b / \partial \theta)_{a}$. We find $(\partial b / \partial \theta)_{a}$ by using the constraint equation. [Ran out of time here]. Implicit differentiation of constraint $a=b \cos \theta$: we have $0=(\partial a / \partial \theta)_{a}=(\partial b / \partial \theta)_{a} \cos \theta-b \sin \theta$, so $(\partial b / \partial \theta)_{a}=b \tan \theta$, and hence

$$
\left(\frac{\partial A}{\partial \theta}\right)_{a}=\frac{1}{2} a b \cos \theta+\frac{1}{2} a \sin \theta b \tan \theta=\frac{1}{2} a b \sec \theta .
$$

The two systematic methods essentially involve calculating the same quantities, even though things are written differently.

18.02 Lecture 15. - Fri, Oct 12, 2007

Review topics.

- Functions of several variables, contour plots.
- Partial derivatives, gradient; approximation formulas, tangent planes, directional derivatives.

Note: partial differential equations ($=$ equations involving partial derivatives of an unknown function) are very important in physics. E.g., heat equation: $\partial f / \partial t=k\left(\partial^{2} f / \partial x^{2}+\partial^{2} f / \partial y^{2}+\right.$ $\partial^{2} f / \partial z^{2}$) describes evolution of temperature over time.

- Min/max problems: critical points, 2nd derivative test, checking boundary. (least squares won't be on the exam)
- Differentials, chain rule, change of variables.
- Non-independent variables: Lagrange multipliers, and constrained partial derivatives.

Re-explanation of how to compute constrained partials: say $f=f(x, y, z)$ where $g(x, y, z)=c$. To find $(\partial f / \partial z)_{y}$:

1) using differentials: $d f=f_{x} d x+f_{y} d y+f_{z} d z$. We set $d y=0$ since y held constant, and want to eliminate $d x$. For this we use the constraint: $d g=g_{x} d x+g_{y} d y+g_{z} d z=0$, so setting $d y=0$ we get $d x=-g_{z} / g_{x} d z$. Plug into $d f: d f=-f_{x} g_{z} / g_{x} d z+g_{z} d z$, so $(\partial f / \partial z)_{y}=-f_{x} g_{z} / g_{x}+g_{z}$.
2) using chain rule: $\left(\frac{\partial f}{\partial z}\right)_{y}=\frac{\partial f}{\partial x}\left(\frac{\partial x}{\partial z}\right)_{y}+\frac{\partial f}{\partial y}\left(\frac{\partial y}{\partial z}\right)_{y}+\frac{\partial f}{\partial z}\left(\frac{\partial z}{\partial z}\right)_{y}=f_{x}\left(\frac{\partial x}{\partial z}\right)_{y}+f_{z}$, while

$$
0=\left(\frac{\partial g}{\partial z}\right)_{y}=\frac{\partial g}{\partial x}\left(\frac{\partial x}{\partial z}\right)_{y}+\frac{\partial g}{\partial y}\left(\frac{\partial y}{\partial z}\right)_{y}+\frac{\partial g}{\partial z}\left(\frac{\partial z}{\partial z}\right)_{y}=g_{x}\left(\frac{\partial x}{\partial z}\right)_{y}+g_{z}
$$

which gives $(\partial x / \partial z)_{y}$ and hence the answer.

