MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Lecture 11. - Tue, Oct 2, 2007

Differentials.

Recall in single variable calculus: $y=f(x) \Rightarrow d y=f^{\prime}(x) d x$. Example: $y=\sin ^{-1}(x) \Rightarrow x=\sin y$, $d x=\cos y d y$, so $d y / d x=1 / \cos y=1 / \sqrt{1-x^{2}}$.

Total differential: $f=f(x, y, z) \Rightarrow d f=f_{x} d x+f_{y} d y+f_{z} d z$.
This is a new type of object, with its own rules for manipulating it ($d f$ is not the same as Δf ! The textbook has it wrong.) It encodes how variations of f are related to variations of x, y, z. We can use it in two ways:

1. as a placeholder for approximation formulas: $\Delta f \approx f_{x} \Delta x+f_{y} \Delta y+f_{z} \Delta z$.
2. divide by $d t$ to get the chain rule: if $x=x(t), y=y(t), z=z(t)$, then f becomes a function of t and $\frac{d f}{d t}=f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t}+f_{z} \frac{d z}{d t}$

Example: $w=x^{2} y+z, d w=2 x y d x+x^{2} d y+d z$. If $x=t, y=e^{t}, z=\sin t$ then the chain rule gives $d w / d t=\left(2 t e^{t}\right) 1+\left(t^{2}\right) e^{t}+\cos t$, same as what we obtain by substitution into formula for w and one-variable differentiation.

Can justify the chain rule in 2 ways:

1. $d x=x^{\prime}(t) d t, d y=y^{\prime}(t) d t, d z=z^{\prime}(t) d t$, so substituting we get $d w=f_{x} d x+f_{y} d y+f_{z} d z=$ $f_{x} x^{\prime}(t) d t+f_{y} y^{\prime}(t) d t+f_{z} z^{\prime}(t) d t$, hence $d w / d t$.
2. (more rigorous): $\Delta w \simeq f_{x} \Delta x+f_{y} \Delta y+f_{z} \Delta z$, divide both sides by Δt and take limit as $\Delta t \rightarrow 0$.

Applications of chain rule:

Product and quotient formulas for derivatives: $f=u v, u=u(t), v=v(t)$, then $d(u v) / d t=$ $f_{u} u^{\prime}+f_{v} v^{\prime}=v u^{\prime}+u v^{\prime}$. Similarly with $g=u / v, d(u / v) / d t=g_{u} u^{\prime}+g_{v} v^{\prime}=(1 / v) u^{\prime}+\left(-u / v^{2}\right) v^{\prime}=$ $\left(u^{\prime} v-u v^{\prime}\right) / v^{2}$.

Chain rule with more variables: for example $w=f(x, y), x=x(u, v), y=y(u, v)$. Then $d w=f_{x} d x+f_{y} d y=f_{x}\left(x_{u} d u+x_{v} d v\right)+f_{y}\left(y_{u} d u+y_{v} d v\right)=\left(f_{x} x_{u}+f_{y} y_{u}\right) d u+\left(f_{x} x_{v}+f_{y} y_{v}\right) d v$. Identifying coefficients of $d u$ and $d v$ we get $\partial f / \partial u=f_{x} x_{u}+f_{y} y_{u}$ and similarly for $\partial f / \partial v$. It's not legal to "simplify by ∂x ".

Example: polar coordinates: $x=r \cos \theta, y=r \sin \theta$. Then $f_{r}=f_{x} x_{r}+f_{y} y_{r}=\cos \theta f_{x}+\sin \theta f_{y}$, and similarly f_{θ}.

18.02 Lecture 12. - Thu, Oct 4, 2007

Handouts: PS4 solutions, PS5.

Gradient.

Recall chain rule: $\frac{d w}{d t}=w_{x} \frac{d x}{d t}+w_{y} \frac{d y}{d t}+w_{z} \frac{d z}{d t}$. In vector notation: $\frac{d w}{d t}=\nabla w \cdot \frac{d \vec{r}}{d t}$.
Definition: $\nabla w=\left\langle w_{x}, w_{y}, w_{z}\right\rangle$ - GRADIENT VECTOR.
Theorem: ∇w is perpendicular to the level surfaces $w=c$.
Example 1: $w=a x+b y+c z$, then $w=d$ is a plane with normal vector $\nabla w=\langle a, b, c\rangle$.
Example 2: $w=x^{2}+y^{2}$, then $w=c$ are circles, $\nabla w=\langle 2 x, 2 y\rangle$ points radially out so \perp circles.
Example 3: $w=x^{2}-y^{2}$, shown on applet (Lagrange multipliers applet with g disabled).
∇w is a vector whose value depends on the point (x, y) where we evaluate w.

Proof: take a curve $\vec{r}=\vec{r}(t)$ contained inside level surface $w=c$. Then velocity $\vec{v}=d \vec{r} / d t$ is in the tangent plane, and by chain rule, $d w / d t=\nabla w \cdot d \vec{r} / d t=0$, so $\vec{v} \perp \nabla w$. This is true for every \vec{v} in the tangent plane.

Application: tangent plane to a surface. Example: tangent plane to $x^{2}+y^{2}-z^{2}=4$ at $(2,1,1)$: gradient is $\langle 2 x, 2 y,-2 z\rangle=\langle 4,2,-2\rangle$; tangent plane is $4 x+2 y-2 z=8$. (Here we could also solve for $z=\sqrt{x^{2}+y^{2}-4}$ and use linear approximation formula, but in general we can't.)
(Another way to get the tangent plane: $d w=2 x d x+2 y d y-2 z d z=4 d x+2 d y-2 d z$. So $\Delta w \approx 4 \Delta x+2 \Delta y-2 \Delta z$. The level surface is $\Delta w=0$, its tangent plane approximation is $4 \Delta x+2 \Delta y-2 \Delta z=0$, i.e. $4(x-2)+2(y-1)-2(z-1)=0$, same as above).

Directional derivative. Rate of change of w as we move (x, y) in an arbitrary direction.
Take a unit vector $\hat{u}=\langle a, b\rangle$, and look at straight line trajectory $\vec{r}(s)$ with velocity \hat{u}, given by $x(s)=x_{0}+a s, y(s)=y_{0}+b s$. (unit speed, so s is arclength!)

Notation: $\frac{d w}{d s}{ }_{\mid \hat{u}}$.
Geometrically: slice of graph by a vertical plane (not parallel to x or y axes anymore). Directional derivative is the slope. Shown on applet (Functions of two variables), with $w=x^{2}+y^{2}+1$, and rotating slices through a point of the graph.

Know how to calculate $d w / d s$ by chain rule: $\frac{d w}{d s}{ }_{\mid \hat{u}}=\nabla w \cdot \frac{d \vec{r}}{d s}=\nabla w \cdot \hat{u}$.
Geometric interpretation: $d w / d s=\nabla w \cdot \hat{u}=|\nabla w| \cos \theta$. Maximal for $\cos \theta=1$, when \hat{u} is in direction of ∇w. Hence: direction of ∇w is that of fastest increase of w, and $|\nabla w|$ is the directional derivative in that direction. We have $d w / d s=0$ when $\hat{u} \perp \nabla w$, i.e. when \hat{u} is tangent to direction of level surface.

18.02 Lecture 13. - Fri, Oct 5, 2007 (estimated - written before lecture)

Practice exams 2A and 2B are on course web page.

Lagrange multipliers.

Problem: min/max when variables are constrained by an equation $g(x, y, z)=c$.
Example: find point of $x y=3$ closest to origin? I.e. minimize $\sqrt{x^{2}+y^{2}}$, or better $f(x, y)=$ $x^{2}+y^{2}$, subject to $g(x, y)=x y=3$. Illustrated using Lagrange multipliers applet.

Observe on picture: at the minimum, the level curves are tangent to each other, so the normal vectors ∇f and ∇g are parallel.

So: there exists λ ("multiplier") such that $\nabla f=\lambda \nabla g$. We replace the constrained min/max problem in 2 variables with equations involving 3 variables x, y, λ :

$$
\left\{\begin{array} { l }
{ f _ { x } = \lambda g _ { x } } \\
{ f _ { y } = \lambda g _ { y } } \\
{ g = c }
\end{array} \quad \text { i.e. here } \left\{\begin{array}{l}
2 x=\lambda y \\
2 y=\lambda x \\
x y=3 .
\end{array}\right.\right.
$$

In general solving may be hard and require a computer. Here, linear algebra: $\left\{\begin{array}{l}2 x-\lambda y=0 \\ -\lambda x+2 y=0\end{array}\right.$ requires either $x=y=0$ (impossible, since $x y=3$), or det $=4-\lambda^{2}=0$. So $\lambda= \pm 2$. No solutions for $\lambda=-2$, while $\lambda=2$ gives $(\sqrt{3}, \sqrt{3})$ and $(-\sqrt{3},-\sqrt{3})$. (Checked on applet that $\nabla f=2 \nabla g$ at minimum).

Why the method works: at constrained min/max, moving in any direction along the constraint surface $g=c$ should give $d f / d s=0$. So, for any \hat{u} tangent to $\{g=c\}, \left.\frac{d f}{d s} \right\rvert\, \hat{u}=\nabla f \cdot \hat{u}=0$, i.e. $\hat{u} \perp \nabla f$. Therefore ∇f is normal to tangent plane to $g=c$, and so is ∇g, hence the gradient vectors are parallel.

Warning: method doesn't say whether we have a min or a max, and second derivative test doesn't apply with constrained variables. Need to answer using geometric argument or by comparing values of f.

Advanced example: surface-minimizing pyramid.
Triangular-based pyramid with given triangle as base and given volume V, using as little surface area as possible.

Note: $V=\frac{1}{3} A_{\text {base }} h$, so height h is fixed, top vertex moves in a plane $z=h$.
We can set up problem in coordinates: base vertices $P_{1}=\left(x_{1}, y_{1}, 0\right), P_{2}, P_{3}$, and top vertex $P=(x, y, h)$. Then areas of faces $=\frac{1}{2}\left|P \vec{P}_{1} \times \overrightarrow{P P}_{2}\right|$, etc. Calculations to find critical point of function of (x, y) are very hard.

Key idea: use variables adapted to the geometry, instead of (x, y) : let $a_{1}, a_{2}, a_{3}=$ lengths of sides of the base triangle; $u_{1}, u_{2}, u_{3}=$ distances in the xy-plane from the projection of P to the sides of the base triangle. Then each face is a triangle with base length a_{i} and height $\sqrt{u_{i}^{2}+h^{2}}$ (using Pythagorean theorem).

So we must minimize $f\left(u_{1}, u_{2}, u_{3}\right)=\frac{1}{2} a_{1} \sqrt{u_{1}^{2}+h^{2}}+\frac{1}{2} a_{2} \sqrt{u_{2}^{2}+h^{2}}+\frac{1}{2} a_{3} \sqrt{u_{3}^{2}+h^{2}}$.
Constraint? (asked using flashcards; this was a bad choice, very few students responded at all.) Decomposing base into 3 smaller triangles with heights u_{i}, we must have $g\left(u_{1}, u_{2}, u_{3}\right)=$ $\frac{1}{2} a_{1} u_{1}+\frac{1}{2} a_{2} u_{2}+\frac{1}{2} a_{3} u_{3}=A_{\text {base }}$.

Lagrange multiplier method: $\nabla f=\lambda \nabla g$ gives

$$
\frac{a_{1}}{2} \frac{u_{1}}{\sqrt{u_{1}^{2}+h^{2}}}=\lambda \frac{a_{1}}{2}, \quad \text { similarly for } u_{2} \text { and } u_{3} .
$$

We conclude $\lambda=\frac{u_{1}}{\sqrt{u_{1}^{2}+h^{2}}}=\frac{u_{2}}{\sqrt{u_{2}^{2}+h^{2}}}=\frac{u_{3}}{\sqrt{u_{3}^{2}+h^{2}}}$, hence $u_{1}=u_{2}=u_{3}$, so P lies above the incenter.

