MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

18.02 Lecture 11. – Tue, Oct 2, 2007

Differentials.

Recall in single variable calculus: $y = f(x) \Rightarrow dy = f'(x) dx$. Example: $y = \sin^{-1}(x) \Rightarrow x = \sin y$, $dx = \cos y \, dy$, so $dy/dx = 1/\cos y = 1/\sqrt{1-x^2}$.

Total differential: $f = f(x, y, z) \Rightarrow df = f_x dx + f_y dy + f_z dz$.

This is a new type of object, with its own rules for manipulating it (df is not the same as Δf ! The textbook has it wrong.) It encodes how variations of f are related to variations of x, y, z. We can use it in two ways:

1. as a placeholder for approximation formulas: $\Delta f \approx f_x \Delta x + f_y \Delta y + f_z \Delta z$.

2. divide by dt to get the **chain rule**: if x = x(t), y = y(t), z = z(t), then f becomes a function of t and $\frac{df}{dt} = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} + f_z \frac{dz}{dt}$

Example: $w = x^2y + z$, $dw = 2xy dx + x^2 dy + dz$. If x = t, $y = e^t$, $z = \sin t$ then the chain rule gives $dw/dt = (2te^t) 1 + (t^2) e^t + \cos t$, same as what we obtain by substitution into formula for w and one-variable differentiation.

Can justify the chain rule in 2 ways:

1. dx = x'(t) dt, dy = y'(t) dt, dz = z'(t) dt, so substituting we get $dw = f_x dx + f_y dy + f_z dz = f_x x'(t) dt + f_y y'(t) dt + f_z z'(t) dt$, hence dw/dt.

2. (more rigorous): $\Delta w \simeq f_x \Delta x + f_y \Delta y + f_z \Delta z$, divide both sides by Δt and take limit as $\Delta t \to 0$.

Applications of chain rule:

Product and quotient formulas for derivatives: f = uv, u = u(t), v = v(t), then $d(uv)/dt = f_u u' + f_v v' = vu' + uv'$. Similarly with g = u/v, $d(u/v)/dt = g_u u' + g_v v' = (1/v) u' + (-u/v^2) v' = (u'v - uv')/v^2$.

Chain rule with more variables: for example w = f(x, y), x = x(u, v), y = y(u, v). Then $dw = f_x dx + f_y dy = f_x(x_u du + x_v dv) + f_y(y_u du + y_v dv) = (f_x x_u + f_y y_u) du + (f_x x_v + f_y y_v) dv$. Identifying coefficients of du and dv we get $\partial f/\partial u = f_x x_u + f_y y_u$ and similarly for $\partial f/\partial v$. It's not legal to "simplify by ∂x ".

Example: polar coordinates: $x = r \cos \theta$, $y = r \sin \theta$. Then $f_r = f_x x_r + f_y y_r = \cos \theta f_x + \sin \theta f_y$, and similarly f_{θ} .

18.02 Lecture 12. – Thu, Oct 4, 2007

Handouts: PS4 solutions, PS5.

Gradient.

Recall chain rule: $\frac{dw}{dt} = w_x \frac{dx}{dt} + w_y \frac{dy}{dt} + w_z \frac{dz}{dt}$. In vector notation: $\frac{dw}{dt} = \nabla w \cdot \frac{d\vec{r}}{dt}$. Definition: $\nabla w = \langle w_x, w_y, w_z \rangle$ – GRADIENT VECTOR.

Theorem: ∇w is perpendicular to the level surfaces w = c.

Example 1: w = ax + by + cz, then w = d is a plane with normal vector $\nabla w = \langle a, b, c \rangle$.

Example 2: $w = x^2 + y^2$, then w = c are circles, $\nabla w = \langle 2x, 2y \rangle$ points radially out so \perp circles. Example 3: $w = x^2 - y^2$, shown on applet (Lagrange multipliers applet with g disabled). ∇w is a vector whose value depends on the point (x, y) where we evaluate w.

Proof: take a curve $\vec{r} = \vec{r}(t)$ contained inside level surface w = c. Then velocity $\vec{v} = d\vec{r}/dt$ is in the tangent plane, and by chain rule, $dw/dt = \nabla w \cdot d\vec{r}/dt = 0$, so $\vec{v} \perp \nabla w$. This is true for every \vec{v} in the tangent plane.

Application: tangent plane to a surface. Example: tangent plane to $x^2 + y^2 - z^2 = 4$ at (2, 1, 1): gradient is $\langle 2x, 2y, -2z \rangle = \langle 4, 2, -2 \rangle$; tangent plane is 4x + 2y - 2z = 8. (Here we could also solve for $z = \sqrt{x^2 + y^2 - 4}$ and use linear approximation formula, but in general we can't.)

(Another way to get the tangent plane: dw = 2x dx + 2y dy - 2z dz = 4dx + 2dy - 2dz. So $\Delta w \approx 4\Delta x + 2\Delta y - 2\Delta z$. The level surface is $\Delta w = 0$, its tangent plane approximation is $4\Delta x + 2\Delta y - 2\Delta z = 0$, i.e. 4(x-2) + 2(y-1) - 2(z-1) = 0, same as above).

Directional derivative. Rate of change of w as we move (x, y) in an arbitrary direction.

Take a unit vector $\hat{u} = \langle a, b \rangle$, and look at straight line trajectory $\vec{r}(s)$ with velocity \hat{u} , given by $x(s) = x_0 + as$, $y(s) = y_0 + bs$. (unit speed, so s is arclength!)

Notation: $\frac{dw}{ds}_{|\hat{u}}$.

Geometrically: slice of graph by a vertical plane (not parallel to x or y axes anymore). Directional derivative is the slope. Shown on applet (Functions of two variables), with $w = x^2 + y^2 + 1$, and rotating slices through a point of the graph.

Know how to calculate dw/ds by chain rule: $\frac{dw}{ds}_{|\hat{u}} = \nabla w \cdot \frac{d\vec{r}}{ds} = \nabla w \cdot \hat{u}.$

Geometric interpretation: $dw/ds = \nabla w \cdot \hat{u} = |\nabla w| \cos \theta$. Maximal for $\cos \theta = 1$, when \hat{u} is in direction of ∇w . Hence: direction of ∇w is that of fastest increase of w, and $|\nabla w|$ is the directional derivative in that direction. We have dw/ds = 0 when $\hat{u} \perp \nabla w$, i.e. when \hat{u} is tangent to direction of level surface.

18.02 Lecture 13. – Fri, Oct 5, 2007 (estimated – written before lecture)

Practice exams 2A and 2B are on course web page.

Lagrange multipliers.

Problem: min/max when variables are constrained by an equation g(x, y, z) = c.

Example: find point of xy = 3 closest to origin ? I.e. minimize $\sqrt{x^2 + y^2}$, or better $f(x, y) = x^2 + y^2$, subject to g(x, y) = xy = 3. Illustrated using Lagrange multipliers applet.

Observe on picture: at the minimum, the level curves are tangent to each other, so the normal vectors ∇f and ∇g are parallel.

So: there exists λ ("multiplier") such that $\nabla f = \lambda \nabla g$. We replace the constrained min/max problem in 2 variables with equations involving 3 variables x, y, λ :

$\int f_x$	$=\lambda g_x$			$2x = \lambda y$
$\left\{ f_{y} \right\}$	$=\lambda g_y$	i.e. here	{	$2y = \lambda x$
g =	= <i>c</i>			xy = 3.

In general solving may be hard and require a computer. Here, linear algebra: $\begin{cases} 2x - \lambda y = 0 \\ -\lambda x + 2y = 0 \end{cases}$

requires either x = y = 0 (impossible, since xy = 3), or det $= 4 - \lambda^2 = 0$. So $\lambda = \pm 2$. No solutions for $\lambda = -2$, while $\lambda = 2$ gives $(\sqrt{3}, \sqrt{3})$ and $(-\sqrt{3}, -\sqrt{3})$. (Checked on applet that $\nabla f = 2\nabla g$ at minimum).

Why the method works: at constrained min/max, moving in any direction along the constraint surface g = c should give df/ds = 0. So, for any \hat{u} tangent to $\{g = c\}, \frac{df}{ds}|_{\hat{u}} = \nabla f \cdot \hat{u} = 0$, i.e. $\hat{u} \perp \nabla f$. Therefore ∇f is normal to tangent plane to g = c, and so is ∇g , hence the gradient vectors are parallel.

Warning: method doesn't say whether we have a min or a max, and second derivative test doesn't apply with constrained variables. Need to answer using geometric argument or by comparing values of f.

Advanced example: surface-minimizing pyramid.

Triangular-based pyramid with given triangle as base and given volume V, using as little surface area as possible.

Note: $V = \frac{1}{3}A_{base}h$, so height h is fixed, top vertex moves in a plane z = h.

We can set up problem in coordinates: base vertices $P_1 = (x_1, y_1, 0)$, P_2 , P_3 , and top vertex P = (x, y, h). Then areas of faces $= \frac{1}{2} |\vec{PP_1} \times \vec{PP_2}|$, etc. Calculations to find critical point of function of (x, y) are very hard.

Key idea: use variables adapted to the geometry, instead of (x, y): let a_1, a_2, a_3 = lengths of sides of the base triangle; u_1, u_2, u_3 = distances in the xy-plane from the projection of P to the sides of the base triangle. Then each face is a triangle with base length a_i and height $\sqrt{u_i^2 + h^2}$ (using Pythagorean theorem).

So we must minimize $f(u_1, u_2, u_3) = \frac{1}{2}a_1\sqrt{u_1^2 + h^2} + \frac{1}{2}a_2\sqrt{u_2^2 + h^2} + \frac{1}{2}a_3\sqrt{u_3^2 + h^2}$.

Constraint? (asked using flashcards; this was a bad choice, very few students responded at all.) Decomposing base into 3 smaller triangles with heights u_i , we must have $g(u_1, u_2, u_3) = \frac{1}{2}a_1u_1 + \frac{1}{2}a_2u_2 + \frac{1}{2}a_3u_3 = A_{base}$.

Lagrange multiplier method: $\nabla f = \lambda \nabla g$ gives

$$\frac{a_1}{2}\frac{u_1}{\sqrt{u_1^2+h^2}} = \lambda \frac{a_1}{2}, \quad \text{similarly for } u_2 \text{ and } u_3.$$

We conclude $\lambda = \frac{u_1}{\sqrt{u_1^2 + h^2}} = \frac{u_2}{\sqrt{u_2^2 + h^2}} = \frac{u_3}{\sqrt{u_3^2 + h^2}}$, hence $u_1 = u_2 = u_3$, so *P* lies above the incenter.