MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Functions of several variables.

Recall: for a function of 1 variable, we can plot its graph, and the derivative is the slope of the tangent line to the graph.

Plotting graphs of functions of 2 variables: examples $z=-y, z=1-x^{2}-y^{2}$, using slices by the coordinate planes. (derived carefully).

Contour plot: level curves $f(x, y)=c$. Amounts to slicing the graph by horizontal planes $z=c$.
Showed 2 examples from "real life": a topographical map, and a temperature map, then did the examples $z=-y$ and $z=1-x^{2}-y^{2}$. Showed more examples of computer plots ($z=x^{2}+y^{2}$, $z=y^{2}-x^{2}$, and another one).

Contour plot gives some qualitative info about how f varies when we change x, y. (shown an example where increasing x leads f to increase).

Partial derivatives.
$f_{x}=\frac{\partial f}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{\Delta x} ;$ same for f_{y}.
Geometric interpretation: f_{x}, f_{y} are slopes of tangent lines of vertical slices of the graph of f (fixing $y=y_{0}$; fixing $x=x_{0}$).

How to compute: treat x as variable, y as constant.
Example: $f(x, y)=x^{3} y+y^{2}$, then $f_{x}=3 x^{2} y, f_{y}=x^{3}+2 y$.

18.02 Lecture 9. - Thu, Sept 27, 2007

Handouts: PS3 solutions, PS4.

Linear approximation

Interpretation of f_{x}, f_{y} as slopes of slices of the graph by planes parallel to $x z$ and $y z$ planes.
Linear approximation formula: $\Delta f \approx f_{x} \Delta x+f_{y} \Delta y$.
Justification: f_{x} and f_{y} give slopes of two lines tangent to the graph:
$y=y_{0}, z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)$ and $x=x_{0}, z=z_{0}+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$.
We can use this to get the equation of the tangent plane to the graph:

$$
z=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right) .
$$

Approximation formula $=$ the graph is close to its tangent plane.

Min/max problems.

At a local max or $\min , f_{x}=0$ and $f_{y}=0$ (since $\left(x_{0}, y_{0}\right)$ is a local max or min of the slice). Because 2 lines determine tangent plane, this is enough to ensure that tangent plane is horizontal (approximation formula: $\Delta f \simeq 0$, or rather, $|\Delta f| \ll|\Delta x|,|\Delta y|$).

Def of critical point: $\left(x_{0}, y_{0}\right)$ where $f_{x}=0$ and $f_{y}=0$.
A critical point may be a local min, local max, or saddle.
Example: $f(x, y)=x^{2}-2 x y+3 y^{2}+2 x-2 y$.
Critical point: $f_{x}=2 x-2 y+2=0, f_{y}=-2 x+6 y-2=0$, gives $\left(x_{0}, y_{0}\right)=(-1,0)$ (only one critical point).

Is it a max, min or saddle? (pictures shown of each type). Systematic answer: next lecture.
For today: observe $f=(x-y)^{2}+2 y^{2}+2 x-2 y=(x-y+1)^{2}+2 y^{2}-1 \geq-1$, so minimum.

Least squares.

Set up problem: experimental data $\left(x_{i}, y_{i}\right)(i=1, \ldots, n)$, want to find a best-fit line $y=a x+b$ (the unknowns here are a, b, not $x, y!$)

Deviations: $y_{i}-\left(a x_{i}+b\right)$; want to minimize the total square deviation $D=\sum_{i}\left(y_{i}-\left(a x_{i}+b\right)\right)^{2}$. $\frac{\partial D}{\partial a}=0$ and $\frac{\partial D}{\partial b}=0$ leads to a 2×2 linear system for a and b (done in detail as in Notes LS):

$$
\begin{aligned}
\left(\sum x_{i}^{2}\right) a+\left(\sum x_{i}\right) b & =\sum x_{i} y_{i} \\
\left(\sum x_{i}\right) a+n b & =\sum y_{i}
\end{aligned}
$$

Least-squares setup also works in other cases: e.g. exponential laws
$y=c e^{a x}$ (taking logarithms: $\ln y=\ln c+a x$, so setting $b=\ln c$ we reduce to linear case); or quadratic laws $y=a x^{2}+b x+c$ (minimizing total square deviation leads to a 3×3 linear system for $a, b, c)$.

Example: Moore's Law (number of transistors on a computer chip increases exponentially with time): showed interpolation line on a log plot.
18.02 Lecture 10. - Fri, Sept 28, 2007

Second derivative test.

Recall critical points can be local min $\left(w=x^{2}+y^{2}\right)$, local max $\left(w=-x^{2}-y^{2}\right)$, saddle $(w=$ $y^{2}-x^{2}$); slides shown of each type.

Goal: determine type of a critical point, and find the global min/max.
Note: global min/max may be either at a critical point, or on the boundary of the domain/at infinity.

We start with the case of $w=a x^{2}+b x y+c y^{2}$, at $(0,0)$.
Example from Tuesday: $w=x^{2}-2 x y+3 y^{2}$: completing the square, $w=(x-y)^{2}+2 y^{2}$, minimum.
If $a \neq 0$, then $w=a\left(x^{2}+\frac{b}{a} x y\right)+c y^{2}=a\left(x+\frac{b}{2 a} y\right)^{2}+\left(c-\frac{b^{2}}{4 a}\right) y^{2}=\frac{1}{4 a}\left(4 a^{2}\left(x+\frac{b}{2 a} y\right)^{2}+\left(4 a c-b^{2}\right) y^{2}\right)$.
3 cases: if $4 a c-b^{2}>0$, same signs, if $a>0$ then minimum, if $a<0$ then maximum; if $4 a c-b^{2}<0$, opposite signs, saddle; if $4 a c-b^{2}=0$, degenerate case.

This is related to the quadratic formula: $w=y^{2}\left(a\left(\frac{x}{y}\right)^{2}+b\left(\frac{x}{y}\right)+c\right)$.
If $b^{2}-4 a c<0$ then no roots, so $a t^{2}+b t+c$ has a constant sign, and w is either always nonnegative or always nonpositive (min or max). If $b^{2}-4 a c>0$ then $a t^{2}+b t+c$ crosses zero and changes sign, so w can have both signs, saddle.

General case: second derivative test.
We look at second derivatives: $f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}, f_{x y}, f_{y x}, f_{y y}$. Fact: $f_{x y}=f_{y x}$.
Given f and a critical point $\left(x_{0}, y_{0}\right)$, set $A=f_{x x}\left(x_{0}, y_{0}\right), B=f_{x y}\left(x_{0}, y_{0}\right), C=f_{y y}\left(x_{0}, y_{0}\right)$, then:

- if $A C-B^{2}>0$ then: if $A>0$ (or C), local min; if $A<0$, local max.
- if $A C-B^{2}<0$ then saddle.
- if $A C-B^{2}=0$ then can't conclude.

Checked quadratic case ($f_{x x}=2 a=A, f_{x y}=b=B, f_{y y}=2 c=C$, then $A C-B^{2}=4 a c-b^{2}$).
General justification: quadratic approximation formula (Taylor series at order 2):
$\Delta f \simeq f_{x}\left(x-x_{0}\right)+f_{y}\left(y-y_{0}\right)+\frac{1}{2} f_{x x}\left(x-x_{0}\right)^{2}+f_{x y}\left(x-x_{0}\right)\left(y-y_{0}\right)+\frac{1}{2} f_{y y}\left(y-y_{0}\right)^{2}$.
At a critical point, $\Delta f \simeq \frac{A}{2}\left(x-x_{0}\right)^{2}+B\left(x-x_{0}\right)\left(y-y_{0}\right)+\frac{C}{2}\left(y-y_{0}\right)^{2}$. In degenerate case, would need higher order derivatives to conclude.

NOTE: the global min/max of a function is not necessarily at a critical point! Need to check boundary / infinity.

Example: $f(x, y)=x+y+\frac{1}{x y}$, for $x>0, y>0$.
$f_{x}=1-\frac{1}{x^{2} y}=0, f_{y}=1-\frac{1}{x y^{2}}=0$. So $x^{2} y=1, x y^{2}=1$, only critical point is $(1,1)$.
$f_{x x}=2 / x^{3} y, f_{x y}=1 / x^{2} y^{2}, f_{y y}=2 / x y^{3}$. So $A=2, B=1, C=2$.
Question: type of critical point? Answer: $A C-B^{2}=2 \cdot 2-1>0, A=2>0$, local min.
What about the maximum? Answer: $f \rightarrow \infty$ near boundary $(x \rightarrow 0$ or $y \rightarrow 0)$ and at infinity.

