MIT OpenCourseWare <u>http://ocw.mit.edu</u>

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

18.02 Lecture 8. - Tue, Sept 25, 2007

Functions of several variables.

Recall: for a function of 1 variable, we can plot its graph, and the derivative is the slope of the tangent line to the graph.

Plotting graphs of functions of 2 variables: examples z = -y, $z = 1 - x^2 - y^2$, using slices by the coordinate planes. (derived carefully).

Contour plot: level curves f(x, y) = c. Amounts to slicing the graph by horizontal planes z = c.

Showed 2 examples from "real life": a topographical map, and a temperature map, then did the examples z = -y and $z = 1 - x^2 - y^2$. Showed more examples of computer plots ($z = x^2 + y^2$, $z = y^2 - x^2$, and another one).

Contour plot gives some qualitative info about how f varies when we change x, y. (shown an example where increasing x leads f to increase).

Partial derivatives.

 $f_x = \frac{\partial f}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}; \text{ same for } f_y.$

Geometric interpretation: f_x, f_y are slopes of tangent lines of vertical slices of the graph of f (fixing $y = y_0$; fixing $x = x_0$).

How to compute: treat x as variable, y as constant.

Example: $f(x, y) = x^3y + y^2$, then $f_x = 3x^2y$, $f_y = x^3 + 2y$.

18.02 Lecture 9. - Thu, Sept 27, 2007

Handouts: PS3 solutions, PS4.

Linear approximation

Interpretation of f_x , f_y as slopes of *slices* of the graph by planes parallel to xz and yz planes. Linear approximation formula: $\Delta f \approx f_x \Delta x + f_y \Delta y$.

Justification: f_x and f_y give slopes of two lines tangent to the graph:

 $y = y_0$, $z = z_0 + f_x(x_0, y_0)(x - x_0)$ and $x = x_0$, $z = z_0 + f_y(x_0, y_0)(y - y_0)$.

We can use this to get the equation of the tangent plane to the graph:

$$z = z_0 + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

Approximation formula = the graph is close to its tangent plane.

Min/max problems.

At a local max or min, $f_x = 0$ and $f_y = 0$ (since (x_0, y_0) is a local max or min of the slice). Because 2 lines determine tangent plane, this is enough to ensure that tangent plane is horizontal (approximation formula: $\Delta f \simeq 0$, or rather, $|\Delta f| \ll |\Delta x|, |\Delta y|$).

Def of critical point: (x_0, y_0) where $f_x = 0$ and $f_y = 0$.

A critical point may be a local min, local max, or saddle.

Example: $f(x,y) = x^2 - 2xy + 3y^2 + 2x - 2y$.

Critical point: $f_x = 2x - 2y + 2 = 0$, $f_y = -2x + 6y - 2 = 0$, gives $(x_0, y_0) = (-1, 0)$ (only one critical point).

Is it a max, min or saddle? (pictures shown of each type). Systematic answer: next lecture. For today: observe $f = (x - y)^2 + 2y^2 + 2x - 2y = (x - y + 1)^2 + 2y^2 - 1 \ge -1$, so minimum.

Least squares.

Set up problem: experimental data (x_i, y_i) (i = 1, ..., n), want to find a best-fit line y = ax + b (the unknowns here are a, b, not x, y!)

Deviations: $y_i - (ax_i + b)$; want to minimize the total square deviation $D = \sum_i (y_i - (ax_i + b))^2$. $\frac{\partial D}{\partial a} = 0$ and $\frac{\partial D}{\partial b} = 0$ leads to a 2 × 2 linear system for a and b (done in detail as in Notes LS):

$$\left(\sum x_i^2\right)a + \left(\sum x_i\right)b = \sum x_i y_i$$
$$\left(\sum x_i\right)a + nb = \sum y_i$$

Least-squares setup also works in other cases: e.g. exponential laws

 $y = ce^{ax}$ (taking logarithms: $\ln y = \ln c + ax$, so setting $b = \ln c$ we reduce to linear case); or quadratic laws $y = ax^2 + bx + c$ (minimizing total square deviation leads to a 3×3 linear system for a, b, c).

Example: Moore's Law (number of transistors on a computer chip increases exponentially with time): showed interpolation line on a log plot.

18.02 Lecture 10. - Fri, Sept 28, 2007

Second derivative test.

Recall critical points can be local min $(w = x^2 + y^2)$, local max $(w = -x^2 - y^2)$, saddle $(w = y^2 - x^2)$; slides shown of each type.

Goal: determine type of a critical point, and find the global min/max.

Note: global min/max may be either at a critical point, or on the boundary of the domain/at infinity.

We start with the case of $w = ax^2 + bxy + cy^2$, at (0, 0).

Example from Tuesday: $w = x^2 - 2xy + 3y^2$: completing the square, $w = (x - y)^2 + 2y^2$, minimum.

If
$$a \neq 0$$
, then $w = a(x^2 + \frac{b}{a}xy) + cy^2 = a(x + \frac{b}{2a}y)^2 + (c - \frac{b^2}{4a})y^2 = \frac{1}{4a}(4a^2(x + \frac{b}{2a}y)^2 + (4ac - b^2)y^2).$

3 cases: if $4ac - b^2 > 0$, same signs, if a > 0 then minimum, if a < 0 then maximum; if $4ac - b^2 < 0$, opposite signs, saddle; if $4ac - b^2 = 0$, degenerate case.

This is related to the quadratic formula: $w = y^2 \left(a(\frac{x}{y})^2 + b(\frac{x}{y}) + c\right).$

If $b^2 - 4ac < 0$ then no roots, so $at^2 + bt + c$ has a constant sign, and w is either always nonnegative or always nonpositive (min or max). If $b^2 - 4ac > 0$ then $at^2 + bt + c$ crosses zero and changes sign, so w can have both signs, saddle.

General case: second derivative test.

We look at second derivatives: $f_{xx} = \frac{\partial^2 f}{\partial x^2}$, f_{xy} , f_{yx} , f_{yy} . Fact: $f_{xy} = f_{yx}$. Given f and a critical point (x_0, y_0) , set $A = f_{xx}(x_0, y_0)$, $B = f_{xy}(x_0, y_0)$, $C = f_{yy}(x_0, y_0)$, then: – if $AC - B^2 > 0$ then: if A > 0 (or C), local min; if A < 0, local max. – if $AC - B^2 < 0$ then saddle. - if $AC - B^2 = 0$ then can't conclude.

Checked quadratic case ($f_{xx} = 2a = A$, $f_{xy} = b = B$, $f_{yy} = 2c = C$, then $AC - B^2 = 4ac - b^2$). General justification: quadratic approximation formula (Taylor series at order 2):

 $\Delta f \simeq f_x \left(x - x_0 \right) + f_y \left(y - y_0 \right) + \frac{1}{2} f_{xx} \left(x - x_0 \right)^2 + f_{xy} \left(x - x_0 \right) (y - y_0) + \frac{1}{2} f_{yy} \left(y - y_0 \right)^2.$

At a critical point, $\Delta f \simeq \frac{A}{2}(x-x_0)^2 + B(x-x_0)(y-y_0) + \frac{C}{2}(y-y_0)^2$. In degenerate case, would need higher order derivatives to conclude.

NOTE: the global min/max of a function is not necessarily at a critical point! Need to check boundary / infinity.

Example: $f(x, y) = x + y + \frac{1}{xy}$, for x > 0, y > 0.

 $f_x = 1 - \frac{1}{x^2 y} = 0, f_y = 1 - \frac{1}{xy^2} = 0.$ So $x^2 y = 1, xy^2 = 1$, only critical point is (1, 1).

 $f_{xx} = 2/x^3y$, $f_{xy} = 1/x^2y^2$, $f_{yy} = 2/xy^3$. So A = 2, B = 1, C = 2.

Question: type of critical point? Answer: $AC - B^2 = 2 \cdot 2 - 1 > 0$, A = 2 > 0, local min.

What about the maximum? Answer: $f \to \infty$ near boundary $(x \to 0 \text{ or } y \to 0)$ and at infinity.