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18.02 Lecture 30.  –  Tue, Nov 27, 2007 

Handouts: practice exams 4A and 4B. 

Clarification from end of last lecture: we derived the diffusion equation from 2 inputs. u = 
concentration, F = flow, satisfy: 

1) from physics: F = −k�u, 
2) from divergence theorem: ∂u/∂t = −div F. 
Combining, we get the diffusion equation: ∂u/∂t = −div F = +kdiv (�u) = k�2u. 

Line integrals in space. 
Force field F = �P,Q,R�, curve C in space, d�r = �dx, dy, dz� 

Work = C F d�r = C P dx + Qdy + R dz.⇒ ·

Example: F = �yz, xz, xy�. C: x = t3 , y = t2 , z = t. 0 ≤ t ≤ 1. Then dx = 3t2dt, dy = 2tdt,


dz = dt and substitute: � � � 1 

F d�r = yzdx + xzdy + xydz = 6t5dt = 1 · 
C C 0 

(In general, express (x, y, z) in terms of a single parameter: 1 degree of freedom) 
Same F, curve C � = segments from (0, 0, 0) to (1, 0, 0) to (1, 1, 0) to (1, 1, 1). In the xy-plane, 

z = 0 = F = xyk̂, so F d�r = 0, no work. For the last segment, x = y = 1, dx = dy = 0, so ⇒ · � 1F = �z, z, 1� and d�r = �0, 0, dz�. We get 1 dz = 1.0 

Both give the same answer because F is conservative, in fact F = �(xyz). 
Recall the fundamental theorem of calculus for line integrals: � P1 

�f d�r = f(P1) − f(P0).· 
P0 

Gradient fields. 
F = �P,Q,R� = �fx, fy, fz� ? 

Then fxy = fyx, fxz = fzx, fyz = fzy, so Py = Qx, Pz = Rx, Qz = Ry. 
Theorem: F is a gradient field if and only if these equalities hold (assuming defined in whole 

space or simply connected region) 

Example: for which a, b is axyı̂ + (x2 + z3)ĵ + (byz2 − 4z3)k̂ a gradient field? 

Py = ax = 2x = Qx so a = 2; Pz = 0 = 0 = Rx; Qz = 3z2 = bz2 = Ry so b = 3. 
Systematic method to find a potential: (carried out on above example) 
fx = 2xy, fy = x2 + z3 , fz = 3yz2 − 4z3: 
fx = 2xy f(x, y, z) = x2y + g(y, z).⇒ 

fy = x2 + gy = x2 + z3 gy = z3 g(y, z) = yz3 + h(z), and f = x2y + yz3 + h(z).⇒ ⇒ 

fz = 3yz2 + h�(z) = 3yz2 − 4z3 ⇒ h�(z) = �−P1 

4z3 ⇒ h(z) = −z4 + c, and f = x2y + yz3 − z4 + c. 

Other method: f(x1, y1, z1) = f(0, 0, 0)+ P0 
F d�r (use a curve that gives an easy computation, · 

e.g. 3 segments parallel to axes). 

Curl: encodes by how much F fails to be conservative. 

curl �P,Q,R� = (Ry − Qz)ı̂ + (Pz − Rx)ĵ + (Qx − Py)k̂. 
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How to remember the formula? Use the del operator � = �∂/∂x, ∂/∂y, ∂/∂z�.

+ Qy + Rz = div F.Recall from last week that � · F = �∂/∂x, ∂/∂y, ∂/∂z� · �P,Q,R� = Px 

ı̂ ĵ k̂
∂ ∂ ∂Now we have: �× F =
 = curl F.

∂x ∂y ∂z 
P Q R 

Interpretation of curl for velocity fields: curl measures angular velocity. 
Example: rotation around z-axis at constant angular velocity ω (trajectories are circles centered 

on z-axis): v = �−ωy, ωx, 0�. 
Then �× v = ... = 0ı̂ + 0ĵ + (ω + ω)k̂ = 2ωk̂. So length of curl = twice angular velocity, and 

direction = axis of rotation. 
A general motion can be complicated, but decomposes into various effects. 
• curl measures the rotation component of a complex motion. 

18.02 Lecture 31.  –  Thu, Nov 29, 2007 

Handouts: PS11 solutions, PS12.

Stokes’ theorem is the 3D analogue of Green’s theorem for work (in the same sense as the


divergence theorem is the 3D analogue of Green for flux). 

ı̂ ĵ k̂
∂ ∂ ∂Recall curl F = �× F =
 = �Ry − Qz, Pz − Rx, Qx − Py�.∂x ∂y ∂z 
P Q R 

Stokes’ theorem: if C is a closed curve, and S any surface bounded by C, then 

F · d�r = (�× F) · n̂ dS. 
C S 

Orientation: compatibility of an orientation of C with an orientation of S (changing orientation 
changes sign on both sides of Stokes). 

Rule: if I walk along C in positive direction, with S to my left, then n̂ is pointing up. (Various 
examples shown.) 

Another formulation (right-hand rule): if thumb points along C (1-D object), index finger towards 
S (2-D object), then middle finger points along n̂ (3-D object). 

More examples shown. 

Stokes Green. 
terclockwise, then F d�r = P dx + Qdy, by Green this is equal to (Qx − Py) dx dy = �� C �� 

· C S 

S �× F · k̂ dx dy = S �× F · n̂ dS, so Green and Stokes say the same thing in this example. 
Remark. In Stokes’ theorem we are free to choose any surface S bounded by C! (e.g. if C = 

circle, S could be a disk, a hemisphere, a cone, ...) 
“Proof” of Stokes. 
1) if C and S are in the xy-plane then the statement follows from Green. 
2) if C and S are in an arbitrary plane: this also reduces to Green in the given plane. Green/Stokes 

works in any plane because of geometric invariance of work, curl and flux under rotations of space. 
They can be defined in purely geometric terms so as not to depend on the coordinate system 
(x, y, z); equivalently, we can choose coordinates (u, v, w) adapted to the given plane, and work 

Example:
 If S is a portion of xy-plane bounded by a curve Cvs.
 coun
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with those coordinates, the expressions of work, curl, flux will be the familiar ones replacing x, y, z 
with u, v, w. 

3) in general, we can decompose S into small pieces, each piece is nearly flat (slanted plane); on 
each piece we have approximately work = flux by Green’s theorem. When adding pieces, the line 
integrals over the inner boundaries cancel each other and we get the line integral over C; the flux 
integrals add up to flux through S. 

Example: verify Stokes for F = zı̂ + xĵ + yk̂, C = unit circle in xy-plane (counterclockwise), 
S = piece of paraboloid z = 1 − x2 − y2 . 

Direct calculation: x = cos θ, y = sin θ, z = 0, so F d�r = z dx + x dy + y dz = x dy = � 2π
C · C C 

cos2 θ dθ = π.0 

By Stokes: curl F = �1, 1, 1�, and n̂ dS = �−fx, −fy, 1�dx dy = �2x, 2y, 1� dx dy. �� �� �� 
(�× F) · dS� = �(2x + 2y + 1) dx dy = 1 dx dy = area(disk) = π. 

S 

( x dx dy = 0 by symmetry and similarly for y). 

18.02 Lecture 32.  –  Fri, Nov 30, 2007 

Stokes and path independence. 
Definition: a region is simply connected if every closed loop C inside it bounds some surface S 

inside it. 
Example: the complement of the z-axis is not simply connected (shown by considering a loop 

encircling the z-axis); the complement of the origin is simply connected. 
Topology: uses these considerations to classify for example surfaces in space: e.g., the mathemat

ical proof that a sphere and a torus are “different” surfaces is that the sphere is simply connected, 
the torus isn’t (in fact it has two “independent” loops that don’t bound). 

Recall: if F is a gradient field then curl(F) = 0. 
Conversely, Theorem: if �×F = 0 in a simply connected region then F is conservative (so F d�r·

is path-independent and we can find a potential). 
Proof: Assume R simply connected, �× F = 0, and consider two curves C1 and C2 with same 

end points. Then C = C1 − C2 is a closed curve so bounds some S; F d� F d�r = � �� C1 
· r − C2 

· 
C F · d�r = S �× F · n̂ dS = 0. 

Orientability. We can apply Stokes’ theorem to any surface S bounded by C... provided that 
it has a well-defined normal vector! Counterexample shown: the Möbius strip. It’s a one-sided 
surface, so we can’t compute flux through it (no possible consistent choice of orientation of n̂). 
Instead, if we want to apply Stokes to the boundary curve C, we must find a two-sided surface with 
boundary C. (pictures shown). 

Stokes and surface independence. 

� In Stokes we can choose any �� �� S bounded by C: so if a same C bounds two surfaces S1, S2, then 
F d�r = curl F n̂ dS = curl F n̂ dS? Can we prove directly that the two flux integrals C S1 S2
· · · 

are equal? 

Answer: change orientation of S2, then S = S1 − S2 is a closed surface with n̂ outwards; so we �� ��� 
can apply the divergence theorem: S curl F n̂ dS = div(curl F) dV . But div(curl F) = 0,· D 
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always. (Checked by calculating in terms of components of F; also, symbolically: � · (�× F) = 0, 
much like u (u × v) = 0 for genuine vectors). · 

Review for Exam 4. 
We’ve seen three types of integrals, with different ways of evaluating: 
1) f dV in rect., cyl., spherical coordinates (I re-explained the general setup and the formulas 

for dV ); applications: center of mass, moment of inertia, gravitational attraction. 
2) surface integrals, flux. Setting up S F n̂ dS, by knowing formulas for n̂ dS.· 
We have seen: planes parallel to coordinate planes (e.g. yz-plane: n̂ = ±ı̂ , dS = dy dz); spheres 

and cylinders (n̂ = straight out/in from center or axis; dS = a dz dθ for cylinders, a2 sin φ dφdθ 
for spheres); if we can express z = f(x, y), n̂ dS = ±�−fx, −fy, 1�dx dy (recall �. . . � is not n̂
and dx dy is not dS); if S has a given normal vector N� (e.g. if S is given by g(x, y, z) = 0), 

= ± � ˆn̂ dS N/(N� k) dx dy. · � � 
3) line integrals C F d�r (= C P dx + Qdy + R dz), evaluate by parameterizing C and expressing · 

in terms of a single variable. 

While these various types of integrals are completely different in terms of interpretation and 
method of evaluation, we’ve seen some theorems that establish bridges between them: �� ��� �� ��� 

a) ( vs ) divergence theorem: S closed surface, n̂ outwards, then S F n̂ dS = D(div F) dV . � �� 
· � 

b) ( vs ) Stokes’ theorem: C closed curve bounding S compatibly oriented, then F d�r = �� C · 
S (�× F) · n̂ dS. 
Both sides of these theorems are integrals of the types discussed above, and are evaluated by the 

usual methods! (even if the integrand happens to be a div or a curl). 
In fact, another conceptually similar bridge exists between no integral at all and line integral: 

the fundamental theorem of calculus, f(P1) − f(P0) = C �f d�r.· 
One more topic: given F with curl F = 0, finding a potential function. 


