MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Lecture 24. - Tue, Nov 6, 2007

Simply connected regions. [slightly different from the actual notations used]
Recall Green's theorem: if C is a closed curve around R counterclockwise then line integrals can be expressed as double integrals:

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{R} \operatorname{curl}(\vec{F}) d A, \quad \oint_{C} \vec{F} \cdot \hat{\boldsymbol{n}} d s=\iint_{R} \operatorname{div}(\vec{F}) d A,
$$

where $\operatorname{curl}(M \hat{\imath}+N \hat{\boldsymbol{\jmath}})=N_{x}-M_{y}, \operatorname{div}(P \hat{\imath}+Q \hat{\boldsymbol{\jmath}})=P_{x}+Q_{y}$.
For Green's theorem to hold, \vec{F} must be defined on the entire region R enclosed by C.
Example: (same as in pset): $\vec{F}=\frac{-y \hat{\imath}+x \hat{\jmath}}{x^{2}+y^{2}}, C=$ unit circle counterclockwise, then $\operatorname{curl}(\vec{F})=$ $\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right)-\frac{\partial}{\partial y}\left(\frac{-y}{x^{2}+y^{2}}\right)=\cdots=0$. So, if we look at both sides of Green's theorem:

$$
\oint_{C} \vec{F} \cdot d \vec{r}=2 \pi \quad \text { (from pset), } \quad \iint_{R} \operatorname{curl} \vec{F} d A=\iint_{R} 0 d A=0 ?
$$

The problem is that R includes 0 , where \vec{F} is not defined.
Definition: a region R in the plane is simply connected if, given any closed curve in R, its interior region is entirely contained in R.

Examples shown.
So: Green's theorem applies safely when the domain in which \vec{F} is defined and differentiable is simply connected: then we automatically know that, if \vec{F} is defined on C, then it's also defined in the region bounded by C.

In the above example, can't apply Green to the unit circle, because the domain of definition of \vec{F} is not simply connected. Still, we can apply Green's theorem to an annulus (picture shown of a curve $C^{\prime}=$ unit circle counterclockwise + segment along x-axis + small circle around origin clockwise + back to the unit circle allong the x-axis, enclosing an annulus R^{\prime}). Then Green applies and says $\oint_{C^{\prime}} \vec{F} \cdot d \vec{r}=\iint_{R^{\prime}} 0 d A=0$; but line integral simplifies to $\oint_{C^{\prime}}=\int_{C}-\int_{C_{2}}$, where $C=$ unit circle, $C_{2}=$ small circle / origin; so line integral is actually the same on C and C_{2} (or any other curve encircling the origin).

Review for Exam 3.

2 main objects: double integrals and line integrals. Must know how to set up and evaluate.
Double integrals: drawing picture of region, taking slices to set up the iterated integral.

Also in polar coordinates, with $d A=r d r d \theta$ (see e.g. Problem 2; not done)
Remember: mass, centroid, moment of inertia.
For evaluation, need to know: usual basic integrals (e.g. $\int \frac{d x}{x}$); integration by substitution (e.g. $\int_{0}^{1} \frac{t d t}{\sqrt{1+t^{2}}}=\int_{1}^{2} \frac{d u}{2 \sqrt{u}}$, setting $u=1+t^{2}$). Don't need to know: complicated trigonometric integrals (e.g. $\int \cos ^{4} \theta d \theta$), integration by parts.

Change of variables: recall method:

1) Jacobian: $\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}u_{x} & u_{y} \\ c_{x} & v_{y}\end{array}\right|$. Its absolute value gives ratio between $d u d v$ and $d x d y$.

2) express integrand in terms of u, v.
3) set up bounds in $u v$-coordinates by drawing picture. The actual example on the test will be reasonably simple (constant bounds, or circle in $u v$-coords).

Line integrals: $\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} \vec{F} \cdot \hat{\boldsymbol{T}} d s=\int_{C} M d x+N d y$. To evaluate, express both x, y in terms of a single parameter and substitute.

Special case: gradient fields. Recall: \vec{F} is conservative $\Leftrightarrow \int \vec{F} \cdot d \vec{r}$ is path independent $\Leftrightarrow \vec{F}$ is the gradient of some potential $f \Leftrightarrow \operatorname{curl} \vec{F}=0$ (i.e. $N_{x}=M_{y}$).

If this is the case, then we can look for a potential using one of the two methods (antiderivatives, or line integral); and we can then use the FTC to avoid calculating the line integral. (cf. Problem 3).

Flux: $\int_{C} \vec{F} \cdot \hat{\boldsymbol{n}} d s\left(=\int_{C}-Q d x+P d y\right)$. Geometric interpretation.
Green's theorem (in both forms) (already written at beginning of lecture).
18.02 Lecture 25. - Fri, Nov 9, 2007

Handouts: Exam 3 solutions.

Triple integrals: $\iiint_{R} f d V(d V=$ volume element $)$.
Example 1: region between paraboloids $z=x^{2}+y^{2}$ and $z=4-x^{2}-y^{2}$ (picture drawn), e.g. volume of this region: $\iiint_{R} 1 d V=\int_{?}^{?} \int_{?}^{?} \int_{x^{2}+y^{2}}^{4-x^{2}-y^{2}} d z d y d x$.

To set up bounds, (1) for fixed (x, y) find bounds for z : here lower limit is $z=x^{2}+y^{2}$, upper limit is $z=4-x^{2}-y^{2} ;(2)$ find the shadow of R onto the $x y$-plane, i.e. set of values of (x, y) above which region lies. Here: R is widest at intersection of paraboloids, which is in plane $z=2$; general method: for which (x, y) is z on top surface $>z$ on bottom surface? Answer: when $4-x^{2}-y^{2}>x^{2}-y^{2}$, i.e. $x^{2}+y^{2}<2$. So we integrate over a disk of radius $\sqrt{2}$ in the $x y$-plane. By usual method to set up double integrals, we finally get:

$$
V=\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^{2}}}^{\sqrt{2-x^{2}}} \int_{x^{2}+y^{2}}^{4-x^{2}-y^{2}} d z d y d x
$$

Evaluation would be easier if we used polar coordinates $x=r \cos \theta, y=r \sin \theta, x^{2}+y^{2}=r^{2}$: then

$$
V=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r^{2}}^{4-r^{2}} d z r d r d \theta
$$

(evaluation easy, not done).
Cylindrical coordinates. $(r, \theta, z), x=r \cos \theta, y=r \sin \theta . r$ measures distance from z-axis, θ measures angle from $x z$-plane (picture shown).

Cylinder of radius a centered on z-axis is $r=a$ (drawn); $\theta=0$ is a vertical half-plane (not drawn).

Volume element: in rect. coords., $d V=d x d y d z$; in cylindrical coords., $d V=r d r d \theta d z$. In both cases this is justified by considering a small box with height Δz and base area ΔA, then volume is $\Delta V=\Delta A \Delta z$.

Applications: Mass: $M=\iiint_{R} \delta d V$.

Average value of f over $R: \bar{f}=\frac{1}{V o l} \iiint_{R} f d V$; weighted average: $\bar{f}=\frac{1}{M a s s} \iiint_{R} f \delta d V$.
In particular, center of mass: $(\bar{x}, \bar{y}, \bar{z})$ where $\bar{x}=\frac{1}{\text { Mass }} \iiint_{R} x \delta d V$.
(Note: can sometimes avoid calculation using symmetry, e.g. in above example $\bar{x}=\bar{y}=0$).
Moment of inertia around an axis: $I=\iiint_{R}(\text { distance from axis })^{2} \delta d V$.
About z-axis: $I_{z}=\iiint_{R} r^{2} \delta d V=\iiint_{R}\left(x^{2}+y^{2}\right) \delta d V$. (consistent with I_{0} in 2D case)
Similarly, about x and y axes: $I_{x}=\iiint_{R}\left(y^{2}+z^{2}\right) \delta d V, I_{y}=\iiint_{R}\left(x^{2}+z^{2}\right) \delta d V$
(setting $z=0$, this is consistent with previous definitions of I_{x} and I_{y} for plane regions).
Example 2: moment of inertia I_{z} of solid cone between $z=a r$ and $z=b(\delta=1)$ (picture drawn):

$$
I_{z}=\iiint_{R} r^{2} d V=\int_{0}^{b} \int_{0}^{2 \pi} \int_{0}^{z / a} r^{2} r d r d \theta d z \quad\left(=\frac{\pi b^{5}}{10 a^{4}}\right) .
$$

(I explained how to find bounds in order $d r d \theta d z$: first we fix z, then slice for given z is the disk bounded by $r=z / a$; the first slice is $z=0$, the last one is $z=b$).

Example 3: volume of region where $z>1-y$ and $x^{2}+y^{2}+z^{2}<1$? Pictures drawn: in space, slice by $y z$-plane, and projection to $x y$-plane.

The bottom surface is the plane $z=1-y$, the upper one is the sphere $z=\sqrt{1-x^{2}-y^{2}}$. So inner is $\int_{1-y}^{\sqrt{1-x^{2}-y^{2}}} d z$. The shadow on the $x y$-plane $=$ points where $1-y<\sqrt{1-x^{2}-y^{2}}$, i.e. squaring both sides, $(1-y)^{2}<1-x^{2}-y^{2}$ i.e. $x^{2}<2 y-2 y^{2}$, i.e. $-\sqrt{2 y-2 y^{2}}<x<\sqrt{2 y-2 y^{2}}$. So we get:

$$
\int_{0}^{1} \int_{-\sqrt{2 y-2 y^{2}}}^{\sqrt{2 y-2 y^{2}}} \int_{1-y}^{\sqrt{1-x^{2}-y^{2}}} d z d x d y
$$

Bounds for y : either by observing that $x^{2}<2 y-y^{2}$ has solutions iff $2 y-y^{2}>0$, i.e. $0<y<1$, or by looking at picture where clearly leftmost point is on z-axis $(y=0)$ and rightmost point is at $y=1$.

