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18.02 Lecture 24.  –  Tue, Nov 6, 2007 

Simply connected regions. [slightly different from the actual notations  used] 
Recall Green’s theorem: if C is a closed curve around R counterclockwise then line integrals can 

be expressed as double integrals:� �� � �� 
F� d�r = curl( F� ) dA, F� n̂ ds = div( F� ) dA,· · 

C R C R 

where curl(M ı̂ + N ĵ) = Nx − My, div(P ı̂ + Qĵ) = Px + Qy. 

For Green’s theorem to hold, F� must be defined on the entire region R enclosed by C. 

Example: (same as in pset): F� = 
−y
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, C = unit circle counterclockwise, then curl( F� ) = 

x
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( 
x ∂ 

( 
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) = = 0. So, if we look at both sides of Green’s theorem: 
∂x x2 + y2 ) − 

∂y x2 + y2 · · · � �� �� 
F� r = 2π (from pset), curl � 0 dA = 0 ? d� F dA = · 

C R R 

The problem is that R includes 0, where F� is not defined. 
Definition: a region R in the plane is simply connected if, given any closed curve in R, its interior 

region is entirely contained in R. 
Examples shown. 

So: Green’s theorem applies safely when the domain in which F� is defined and differentiable is 
simply connected: then we automatically know that, if F� is defined on C, then it’s also defined in 
the region bounded by C. 

In the above example, can’t apply Green to the unit circle, because the domain of definition 
of F� is not simply connected. Still, we can apply Green’s theorem to an annulus (picture shown 
of a curve C � = unit circle counterclockwise + segment along x-axis + small circle around origin 
clockwise + back to the unit circle allong the x-axis, enclosing an annulus R�). Then Green applies � �� � � � 
and says C� F� · d�r = R� 0 dA = 0; but line integral simplifies to C� = C − C2 

, where C = unit 
circle, C2 = small circle / origin; so line integral is actually the same on C and C2 (or any other 
curve encircling the origin). 

Review for Exam 3. 
2 main objects: double integrals and line integrals. Must know how to set up and evaluate. 
Double integrals: drawing picture of region, taking slices to set up the iterated integral. 

Also in polar coordinates, with dA = r dr dθ (see e.g. Problem 2; not done) 
Remember: mass, centroid, moment of inertia. 

dxFor evaluation, need to know: usual basic integrals (e.g. x ); integration by substitution (e.g. � 1 � 2t dt du 

0 
√

1 + t2 
= � 1 2

√
u 

, setting u = 1 + t2). Don’t need to know: complicated trigonometric 

integrals (e.g. cos4θ dθ), integration by parts. 
Change of variables: recall method: 

∂(u, v) � ux uy � 
1) Jacobian: 

∂(x, y)
= �� cx vy 

��. Its absolute value gives ratio between du dv and dx dy. 

2) express integrand in terms of u, v. 
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3) set up bounds in uv-coordinates by drawing picture. The actual example on the test will be 
reasonably simple (constant bounds, or circle in uv-coords). 

Line integrals: 
� 
C F

� d�r = 
� 
C F

� T̂ ds = 
� 
C M dx + N dy. To evaluate, express both x, y in· · 

terms of a single parameter and substitute. 

Special case: gradient fields. Recall: F� is conservative F� d�r is path independent F� is⇔ · ⇔
the gradient of some potential f curl F� = 0 (i.e. Nx = My).⇔ 

If this is the case, then we can look for a potential using one of the two methods (antiderivatives, 
or line integral); and we can then use the FTC to avoid calculating the line integral. (cf. Problem 3). 

Flux: F� n̂ ds (= C −Qdx + P dy). Geometric interpretation. C · 
Green’s theorem (in both forms) (already written at beginning of lecture). 

18.02 Lecture 25.  –  Fri, Nov 9, 2007 

Handouts: Exam 3 solutions. 

Triple integrals: f dV (dV = volume element). 
R 

Example 1: region between paraboloids z = x2 + y2 and z = 4 − x2 − y2 (picture drawn), e.g. ��� � ? � ? � 4−x2−y2 

volume of this region: 1 dV = dz dy dx. 
R ? ? x2+y2 

To set up bounds, (1) for fixed (x, y) find bounds for z: here lower limit is z = x2 +y2, upper limit 
is z = 4−x2 −y2; (2) find the shadow of R onto the xy-plane, i.e. set of values of (x, y) above which 
region lies. Here: R is widest at intersection of paraboloids, which is in plane z = 2; general method: 
for which (x, y) is z on top surface > z on bottom surface? Answer: when 4 − x2 − y2 > x2 − y2 , 

2i.e. x2 + y < 2. So we integrate over a disk of radius 
√

2 in the xy-plane. By usual method to set 
up double integrals, we finally get: � √2 � √2−x2 � 4−x2−y2 

V = dz dy dx. 
2 x2+y2−

√
2 −

√
2−x

Evaluation would be easier if we used polar coordinates x = r cos θ, y = r sin θ, x2 + y2 = r2: then � 2π � √2 � 4−r2 

V = dz r dr dθ. 
0 0 r2 

(evaluation easy, not done). 

Cylindrical coordinates. (r, θ, z), x = r cos θ, y = r sin θ. r measures distance from z-axis, θ 
measures angle from xz-plane (picture shown). 

Cylinder of radius a centered on z-axis is r = a (drawn); θ = 0 is a vertical half-plane (not 
drawn). 

Volume element: in rect. coords., dV = dx dy dz; in cylindrical coords., dV = r dr dθ dz. In both 
cases this is justified by considering a small box with height Δz and base area ΔA, then volume is 
ΔV = ΔA Δz. 

Applications: Mass: M = R δ dV . 
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3 ��� ��� 
Average value of f over R: f ̄= 

1 
f dV ; weighted average: f ̄= 

1 
f δ dV . 

V ol R Mass R 

1
In particular, center of mass: (x̄, ¯ z) where ¯ x δ dV. y, ¯ x = 

Mass R 

(Note: can sometimes avoid calculation using symmetry, e.g. in above example x̄ = ȳ = 0). 

Moment of inertia around an axis: I = (distance from axis)2 δ dV . ��� ��� R 

About z-axis: Iz = r 2 δ dV = (x 2 + y 2) δ dV . (consistent with I0 in 2D case) 
R R��� ��� 

Similarly, about x and y axes: Ix = (y 2 + z 2) δ dV, Iy = (x 2 + z 2) δ dV 
R R 

(setting z = 0, this is consistent with previous definitions of Ix and Iy for plane regions). 

Example 2: moment of inertia Iz of solid cone between z = ar and z = b (δ = 1) (picture drawn): ��� � b � 2π � z/a � � 
πb5 

Iz = r 2 dV = r 2 r dr dθ dz = 
4 .

10aR 0 0 0 

(I explained how to find bounds in order dr dθ dz: first we fix z, then slice for given z is the disk 
bounded by r = z/a; the first slice is z = 0, the last one is z = b). 

Example 3: volume of region where z > 1 − y and x2 + y2 + z2 < 1? Pictures drawn: in space, 
slice by yz-plane, and projection to xy-plane. 

The bottom surface is the plane z = 1 − y, the upper one is the sphere z = 1 − x2 − y2. So 
2 2� √1−x −y � 

inner is dz. The shadow on the xy-plane = points where 1 − y < 1 − x2 − y2, i.e. 
1−y � � 

squaring both sides, (1 − y)2 < 1 − x2 − y2 i.e. x2 < 2y − 2y2, i.e. − 2y − 2y2 < x < 2y − 2y2. 
So we get: � 1 � √2y−2y2 � √1−x2 2−y

0 −
√

2y−2y 1−y 
dz dx dy. 

2 

Bounds for y: either by observing that x2 < 2y − y2 has solutions iff 2y − y2 > 0, i.e. 0 < y < 1, 
or by looking at picture where clearly leftmost point is on z-axis (y = 0) and rightmost point is at 
y = 1. 


