MIT OpenCourseWare
http://ocw.mit.edu
18.02 Multivariable Calculus

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Practice Exam 4B

Problem 1. (10 points)
Let C be the portion of the cylinder $x^{2}+y^{2} \leq 1$ lying in the first octant ($x \geq 0, y \geq 0, z \geq 0$) and below the plane $z=1$. Set up a triple integral in cylindrical coordinates which gives the moment of inertia of C about the z-axis; assume the density to be $\delta=1$.
(Give integrand and limits of integration, but do not evaluate.)
Problem 2. (20 points: 5, 5, 10)
a) A solid sphere S of radius a is placed above the $x y$-plane so it is tangent at the origin and its diameter lies along the z-axis. Give its equation in spherical coordinates.
b) Give the equation of the horizontal plane $z=a$ in spherical coordinates.
c) Set up a triple integral in spherical coordinates which gives the volume of the portion of the sphere S lying above the plane $z=a$. (Give integrand and limits of integration, but do not evaluate.)

Problem 3. (20 points: 5, 15)
Let $\vec{F}=\left(2 x y+z^{3}\right) \hat{\mathrm{\imath}}+\left(x^{2}+2 y z\right) \hat{\mathrm{\jmath}}+\left(y^{2}+3 x z^{2}-1\right) \hat{\mathrm{k}}$.
a) Show that \vec{F} is conservative.
b) Using a systematic method, find a potential function $f(x, y, z)$ such that $\vec{F}=\vec{\nabla} f$. Show your work, even if you can do it mentally.

Problem 4. (25 points: 15, 10)
Let S be the surface formed by the part of the paraboloid $z=1-x^{2}-y^{2}$ lying above the $x y$-plane, and let, $\vec{F}=x \hat{\imath}+y \hat{\jmath}+2(1-z) \hat{\mathrm{k}}$.

Calculate the flux of \vec{F} across S, taking the upward direction as the one for which the flux is positive. Do this in two ways:
a) by direct calculation of $\iint_{S} \vec{F} \cdot \hat{\mathrm{n}} d S$;
b) by computing the flux of \vec{F} across a simpler surface and using the divergence theorem.

Problem 5. (25 points: 10, 8, 7)
Let $\vec{F}=-2 x z \hat{1}+y^{2} \hat{\mathbf{k}}$.
a) Calculate curl \vec{F}.
b) Show that $\iint_{R} \operatorname{curl} \vec{F} \cdot \hat{\mathrm{n}} d S=0$ for any finite portion R of the unit sphere $x^{2}+y^{2}+z^{2}=1$. (take the normal vector n̂ pointing outward).
c) Show that $\oint_{C} \vec{F} \cdot d \vec{r}=0$ for any simple closed curve C on the unit sphere $x^{2}+y^{2}+z^{2}=1$.

